

Performance Targets

- Are what the customer demands
 - * Fabric weight per unit area
 - # Fabric width
 - * Maximum shrinkage levels

Choice of Control Targets

Shrinkages can not be monitored directly Weight is difficult to monitor accurately

Practical control targets are

- Fabric Length (course density)
- Fabric Width (wale density)

Confirm Shrinkage Targets

Check customer's definition of shrinkage

- > Average or maximum
- Line dry or Tumble dry
- Expected level of variation

Control can only be in terms of the average

To know the maximum, we need to know the Standard Deviation

Define Objectives

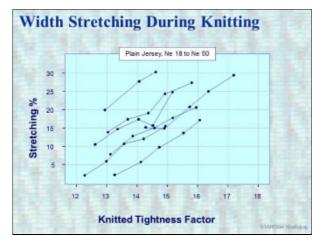
- It is important to distinguish between
 - * Performance Targets
 - ✤ Finishing Control Targets

Finishing Control Targets

- Are what the finisher has to control in order to guarantee performance
- > as few as possible
- > can be measured on-line

Not necessarily the same properties as the performance targets

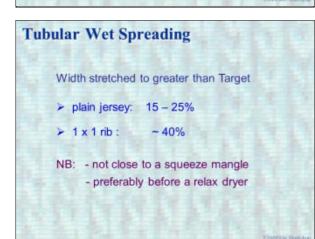
Rule One

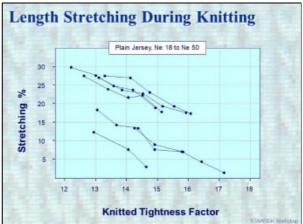

It is not practical to control all of the performance targets at the same time

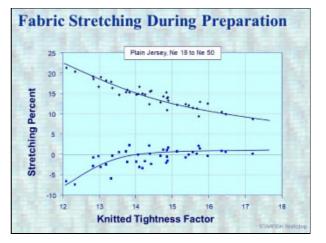
> Select two fabric properties - one for length and one for width and concentrate on them

Tubular or Open Width?

Experience shows that TUBULAR processing usually gives a better chance of hitting finishing targets



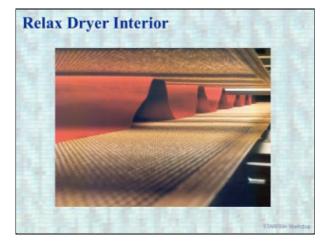



Rule Two

After preparation and dyeing the fabric will be highly stretched

Therefore Equalize length and width tensions

Tubular Wet Spreading

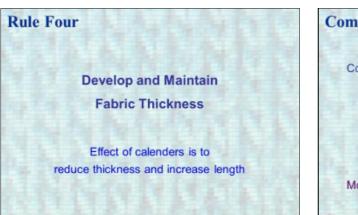


Relax Dryers

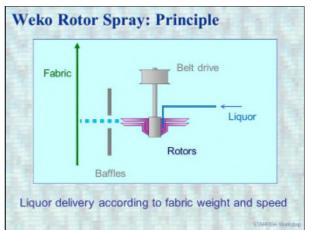
Attempt to imitate tumble drying

- > vibrating carriers
- > perforated drums
- > staggered, opposed air jets

NB: proper overfeed and space between belts



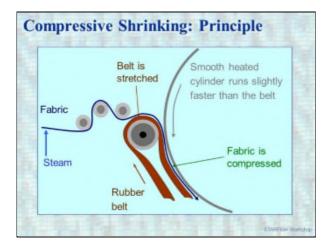
Rule Three

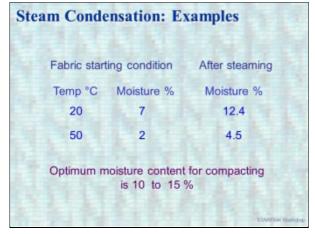

Mechanical action will induce relaxation only when the fabric contains less than about 35% moisture

A technique used with very difficult fabrics, such as brushed fleece, is to spray on 40% of water directly in front of a relax dryer

Consolidation

Tumble drying can cause an increase in fabric THICKNESS of up to 40%

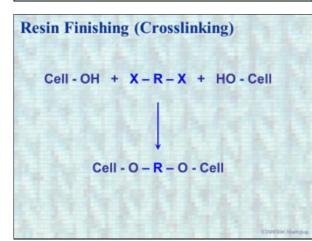

Low-shrink fabrics must have maximum thickness


Compressive Shrinking

Compacting forcibly reduces fabric length

- * rubber belts
- * polished steel shoe

Moisture and frictional conditions are important


Limitations of Compacting

Can change surface appearance

- > polishing
- > apparent colour depth
- surface irregularities

Does not develop proper consolidation > easily pulled out

> Problems are most apparent at high levels of compaction

Steam Condensation: Theory Specific heat of dry cellulose ~ 0.3 Latent heat of steam 540 Cal /g

Heating 100 g of cotton from 20 to 100 °C takes 100 * 0.3 * 80 / 540 = 4.4g steam

If the cotton contains 7% moisture, then a further 1g of steam is condensed

Rule Five

Steam will NOT condense on a hot, dry fabric

Fabric must be cool and have uniform moisture content before the calender or compactor

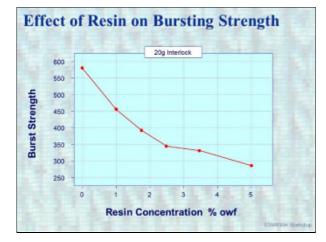
Rule Six

COMPACTORS

should be used to give only

small amounts of

compressive shrinking


Their primary function is to deliver a precisely controlled density of courses

Effect of Resin Finish

On Reference Dimensions

- * Usually significantly longer
- # Usually slightly wider
- ✤ Usually lighter
- lower shrinkage at target weight
 slightly lower spirality

On-line Measurements

- Moisture content at dryers
- * Weight at stenters / compactors
- * Course density at stenters / compactors

Fabric Weight

Monitoring weight for on-line process control is useful only if ...

... moisture content and course density and width are also monitored ...

and included in the control software.

Resin Finishing: Problems

- * Change in Reference Dimensions
- # Effect on colour and handle
- # Free formaldehyde emission
- # Strength and abrasion resistance
- # Stitching damage and dusting

Rule Seven

Resin Finishing needs considerable expertise

It should be avoided if at all possible

Moisture Content

For optimum drying cost and to ensure cool fabric for compacting

> control moisture at 8-10%

To develop maximum shrinkage and consolidation in relax dryers

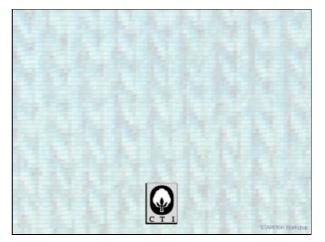
control moisture at 2 – 4%

Moisture meters must be very carefully calibrated

Course Density

On-line monitoring of course density with feedback control for the overfeed ...

> ... is the only way to guarantee delivery of the target fabric length



Rule Eight

Variations in fabric weight and shrinkage due to ...

- > variations in grey yarn count
- > differences in process weight loss
- > almost all other random effects

... are minimized by delivering the fabric with constant width and course density <section-header><complex-block><image>

