# International Institute for Cotton Research Record No. 202

## STARFISH Equations for Single Jersey Fabrics Processed on the Dornier Merceriser and the Gyrostock Dyeing Machine

S. Allan Heap June 1985

Classification:Fabrics / Knitted / PropertiesKey Words:Starfish, Single jersey, Dornier, Gyrostock

Electronic Version: August 2007

Note: The form of the Starfish equations has changed since this report was compiled.

#### Introduction

Research Record No. 182 described the processing of a series of plain single jersey fabrics on the premises of Messrs. Empresa Textil de Barcelos Sarl (TEBE) in March 1984.

This report presents the results of laboratory tests on those fabrics and also the results of regression analysis to estimate the STARFISH equations for the two fabric types (singles and two-fold) and the two processing routes (Gyrostock and Dornier mercerise + Gyrostock).

#### Fabrics

The knitting of the fabrics was carried out at TRD and was described in Research Records 114 and 177. They were produced on three plain jersey machines, (18g 1500 needles, 24g 1920 needles, and 28g 2112 needles) from six lots of yarn (1/20, 1/28, 1/36, 2/40, 2/56, and 2/72 Ne). Each yarn was knitted at five different stitch lengths covering the full range of commercially feasible qualities. For each quality, i.e. for each combination of yarn count and stitch length, two pieces of fabric were available, making two sets of 30 qualities. The two sets were assembled in order of their target finished widths, these targets having been calculated using information collected from samples supplied to TRD in advance by TEBE and from the results of a series of preliminary trials carried out in July 1983. One set was processed through the Barriquand Gyrostock dyeing machine in two lots, followed by centrifuging, wet stretching on a Tubetex Tripad, drying in a Tubetex Super Relax dryer, and final calendering. The other set was processed first through the Dornier tubular merceriser and was then dyed and finished in the same way as the first set.

Finishing targets had been estimated so as to result in final shrinkage figures of approximately 10% in both length and width. They proved to be obtainable in the case of the unmercerised materials, but much more difficult to achieve for the mercerised fabrics.

The finished fabrics were returned to TRD and were tested by our standard methods. Test results were available by November 1984 and the first analysis of the data was completed in January 1985.

#### Results

The basic test data are presented in *Tables 1 to 6*. *Tables 1 and 2* show the results from the greige fabrics, *Tables 3 and 4* are those from the dyed and finished fabrics, and *Tables 5 and 6* are those from the mercerised and dyed and finished materials.

The shrinkage results on the dyed and finished fabrics (*Table 4*) confirm that the calculated finishing targets were mostly reasonable ones and were actually attained more often than not. Fabrics made from the two-fold yarns generally show slightly higher width shrinkages but lower shrinkages in length.

The shrinkage results on the mercerised, dyed and finished fabrics (*Table 6*) confirm that the calculated finishing targets were either inaccurate or were not obtainable in practice. In this case, the differences in shrinkages between singles-yarn and two-fold-yarn fabrics are even more striking.

In both sets of finished fabrics it seems that, for a given level of width shrinkage, the length shrinkage tends to be lower with the tighter fabrics (shorter stitch lengths).

*Figure 1* shows the test results from greige fabrics for relaxed courses /3cm, wales /3cm, stitches /sq. cm and weight per sq. metre as a function of the relaxed stitch length in a way which compares the results for single-yarn fabrics against the two-fold fabrics. *Figures 2 and 3* show the corresponding test data for the dyed and finished, and for the mercerised, dyed and finished fabrics respectively.

Looking at these three sets of graphs we can see that, for a given yarn count and stitch length, fabrics made from two-fold yarns will always have:-

- fewer courses per unit length
- fewer stitches per square cm.

• a lower weight per square metre

So far as the wale density is concerned the picture is not quite so clear. In the greige and the dyed and finished fabrics there is a tendency for the two-fold fabrics to have fewer wales per unit width than the singles fabrics. However, in the mercerised material, the reverse is the case.

These differences in Reference course and wale spacings mean that separate finishing targets must be issued for singles and two-fold fabrics. For example, if nominally identical qualities are made and finished to exactly the same width and weight, then the two-fold fabric would have significantly lower shrinkages in both length and width, provided it were not mercerised. If the fabrics were mercerised then the single-yarn fabric would have better width shrinkage but the length shrinkage would be drastically worse.

This simple example illustrates the importance of being able to predict or calculate the reference dimensions in advance, e.g. by using the STARFISH equations, so that the proper finishing targets can be set.

Comparison of *Figures 2 and 3* or *Tables 4 and 6* confirm that the relaxed mercerised materials have fewer courses but more wales per 3cm than the unmercerised ones. The percentage increase in the wales is greater than the reduction in the courses so the stitch density per square cm. is about 10% greater in the relaxed mercerised than in the unmercerised fabrics. Similarly, the weight per unit area is greater by about 15%. The mercerised fabrics are only marginally thicker than the unmercerised ones but they are significantly stronger. However the increase in strength is mostly accounted for by the increased weight as shown in one of the charts of *Figure 4* where the bursting strength is plotted against the weight per square metre.

Elsewhere in *Figure 4*, we can see that the increase in weight and stitch density caused by mercerising seems to be at least partly caused by the changes which have been brought about in the yarn count and the stitch length (mercerising caused the yarn Tex to increase by about  $6\frac{1}{2}$ %, relative to the dyed material, and the stitch length to reduce by about 5%).

Finally, *Figure 4* also shows the spirality angles in the greige, the dyed, and the mercerised fabrics. In both greige and dyed samples, spirality is affected markedly by the tightness factor (square root of Tex divided by stitch length in cm). The tighter the fabric, the lower the spirality in the fabric. Dyed fabrics show spiral angles of about 5 degrees or so lower than greige fabrics. Most of the mercerised fabrics have spiral angles significantly less than those of the dyed fabrics, but there is considerable scatter in the data and no clear trend has emerged.

For the fabrics made from two-fold yarns, (not plotted) the spiral angle in the greige relaxed fabrics is close to zero and is negative (i.e. spiralling to the left). This means, presumably, that the residual torque in the folded yarn was in the 'S' direction. After dyeing, the spirality is still negative and has increased in size by one to three degrees. After mercerising the spirality has increased even further and is now at about the same absolute level as in the singles fabrics, but in the opposite direction! (See *Table 6*).

#### **Regression Analysis**

The STARFISH equations are of two types named STEP ONE and STEP TWO equations after the way that they are used in the STARFISH models.

STEP ONE equations deal with the change in yarn count and stitch length which is caused by the finishing (and relaxation) process. The current form of these equations is as follows:-

$$Rtex = a . Gtex$$
  
 $RL = a' . GL$ 

where:

*Rtex* and *RL* are the tex and stitch length in the finished relaxed fabric;

Gtex and GL are the tex and stitch length in the greige, as knitted fabric;

a and a' are constants which depend upon the wet processing treatment.

STEP TWO equations are those which describe the finished relaxed reference state of the fabric in terms of the reference tex and the reference stitch length, thus:-

$$Rc = a + b/RL + c \cdot \sqrt{Rtex}$$

$$Rw = a' + b'/RL + c' \cdot \sqrt{Rtex}$$

$$Rs = a''' + b'''/RL^{2} + c''' \cdot Rtex$$

$$Rwt = a'' + b'' \cdot Rtex/RL$$

where:

Rc = courses / cm in the relaxed reference state;

Rw = wales /cm in the relaxed reference state;

Rs = stitches /sq.cm in the relaxed reference state;

Rwt = weight in g/sq. metre in the relaxed reference state.

a, a', b, b', c, c', etc. are constants which depend upon the wet processing treatment.

For the present data, the coefficients of the STEP ONE tex equations (a) were estimated using simple linear regression analysis on the average yarn tex values established before knitting by sampling from the cones, and the average yarn tex in the reference state established by averaging over the five different stitch lengths for yarns taken from the relaxed fabrics.

Because of our experience with earlier single jersey trials, singles and two fold yarns were pooled for this analysis so there were six data pairs in all.

For the STEP ONE stitch length equations, no averaging was carried out and the coefficients (a') were estimated by simple linear regression analysis on the individual data pairs - as knitted and relaxed. Data for singles and two-fold yarns were combined making 30 data pairs in all.

For the STEP TWO equations the reference tex values used were the averages but the reference stitch lengths were the individual measured values. For all STEP TWO equations, the singles-yarn fabrics were treated separately from the two-folds, so there were 15 data pairs in each case.

*Table 7* shows the values of the coefficients which resulted from this analysis, together with the square of the correlation coefficient. In most cases, R-squared is 0.99 or greater which means that the equations account for about 99% of the variation in the data. The few exceptions are almost all in the mercerised material so that the predictions for these may be somewhat less reliable. However, the lowest value for R-squared was 0.94 which is still a very acceptable result.

The regression curves have been plotted alongside the data in *Figures 5 to 11* where it can be seen that the STARFISH equations do model the measured values remarkably well.

Test Results on GREIGE Fabrics - as recieved

| <b>-</b> |        | Ave    | Av StL  | Crses |      | -           |             | Distn  | •    |       |       | Thkn |
|----------|--------|--------|---------|-------|------|-------------|-------------|--------|------|-------|-------|------|
| Fabri    | c 19   | Tex    | C#      | 3ся   | 3ce  | g5 <b>8</b> | Kn/sm<br>   | ##<br> | deg  | g<br> | χ     | eic  |
| 18 Gaug  | e:S    | ingles |         |       |      |             |             |        |      |       |       |      |
| 20Ne     | 327    | 29     | 0.329   | 54.6  | 27.4 | 156         | 726         | 19.6   | 3.2  | 370   | 7     | 732  |
| 20Ne     | 344    | 29     | . 8.345 | 49.3  | 26.9 | 150         | 667         | 28.8   | 4.1  | 371   | 7.3   | 787  |
| 20Ne     | 362    | 29     | 0.362   | 44.7  | 27.3 | 143         | 636         | 21     | 4.7  | 372   | 7     | 69   |
| 20Ne     | 380    | 29     | 8.38    | 41.4  | 27.5 | 139         | 619         | 21.7   | 5.3  | 364   | 7.2   | 71   |
| 20Ne     | 399    | 29     | 0.399   | 37.1  | 27.1 | 132         | 592         | 20.1   | 6.1  | 346   | 7     | 69   |
| 18 Gaug  | e:Ti   | ofold  |         |       |      |             |             |        |      |       |       |      |
| 2/48Ne   | 327    | 28.7   | 0.328   | 53,4  | 27.5 | 153         | 953         | 21.2   | -9.3 | 651   | 7.6   | 68   |
| 2/40Ne   | 344    | 28.7   | 8.343   | 48.1  | 27   | 141         | <b>98</b> 9 | 20.1   | -0.1 | 656   | 7.7   | 65   |
| 2/40Ne   | 362    | 28.7   | 8.362   | 43.1  | 27.1 | 134         | 821         | 28.1   | -8.5 | 648   | 7.6   | 65   |
| 2/48Ne   | 380    | 28.7   | 0.38    | 38.6  | 26.6 | 123         | 814         | 22.2   | -8.7 | 647   | 7.5   | 63   |
| 2/40Ne   | 399    | 28.7   | 0.4     | 35.5  | 27.2 | 116         | 815         | 20.2   | 1.1  | 661   | 7.8   | 62   |
| .4 Gaug  | e:Si   | ngles  |         |       |      |             |             |        |      |       |       |      |
| 28Ne     | 291    | 20.9   | 8.294   | 61.2  | 33.2 | 135         | n.a.        | n.a.   | 13.1 | 271   | 9.1   | 61   |
| 28Ne     | 306    | 20.9   | 0.307   | 49.2  | 32.3 | 129         | n.a.        | n.a.   | 7.7  | 266   | 7.6   | 59   |
| 28Ne     | 321    | 20.9   | 8.322   | 47.1  | 33.1 | 134         | n.a.        | n.a.   | 17.5 | 272   | 8.1   | 66   |
| 28Ne     | 337    | 20.9   | 8.34    | 42.9  | 33.2 | 116         | n.a.        | n.a.   | 15.3 | 266   | . 7.8 | 65   |
| 28Ne     | 354    | 20.9   | 0.357   | 37.6  | 32   | 121         | n.a.        | n.a.   | 11.5 | 253   | 6.7   | 62   |
| 4 Gaug   | e:T+   | ofold  |         |       |      |             |             |        |      |       |       |      |
| 2/56Ne   | 291    | 21.5   | 0.291   | 56.8  | 32.4 | 133         | n.a.        | n.a.   | 2.3  | 466   | 7.2   | 62   |
| 2/56Ne   | 386    | 21.5   | i 8.31  | 49.9  | 31.6 | 125         | n.a.        | n.a.   | 2.6  | 488   | 7.4   | 58   |
| 2/56Ne   | 321    | 21.5   | 6.322   | 45.5  | 31.4 | 113         | n.a.        | n.a.   | 2.7  | 497   | 6.9   | 57-  |
| /56Ne    | 337    | 21.5   | 6.337   | 41.1  | 32.2 | 111         | n.a.        | n.a.   | -0.4 | 516   | 6.9   | 58)  |
| /56Ne    | 354    | 21.5   | 0.354   | 38.8  | 31.5 | 105         | n.a.        | n.a.   | -1.4 | 473   | 6.7   | 60   |
| 8 Gaug   | e:Si   | ngles  |         |       |      |             |             |        |      |       |       |      |
| 36Ne     | 259    | 16     | 0.261   | 56.4  | 38.1 | 105         | n.a.        | n.a.   | 12.7 | 191   | 7.8   | 531  |
| 36Ne     | 273    | 16     | 0.277   | 51.6  | 37.8 | 101         | n.a.        | n.a.   | 11.9 | 205   | 8.1   | 517  |
| 36Ne     | 287    | 16     | 0.287   | 48.5  | 37.3 | 101         | n.a.        | n.a.   | 18   | 191   | 7.1   | 571  |
| 36Ne     | 301    | 16     | 0.305   | 44.8  | 38.4 | 189         | n.a.        | n.a.   | 28   | 198   | 8.3   | 528  |
| 36Ne     | 316    | 16     | 0.319   | 42.8  | 37.9 | 98          | n.a.        | n.a.   | 15.4 | 209   | 9.3   | 571  |
| 8 Gaug   | e : Tw | ofold  |         |       |      |             |             |        |      |       |       |      |
| :/72Ne   | 259    | 16.5   | 0.255   | 59.1  | 37.4 | 189         | n.a.        | n.a.   | 2.8  | 376   | 9     | 559  |
| /72Ne    | 273    | 16.5   |         | 53.4  | 37.7 | 187         | n.a.        | n.a.   | 3.6  | 355   | 7.4   | 521  |
| /72Ne    | 287    | 16.5   |         | 44.6  | 38.2 | 94          | n.a.        | n.a.   | 2.8  | 364   | 8.7   | 520  |
| /72Ne    | 301    |        | 0.302   | 43.6  | 36.7 | 94          | n.a.        | n.a.   | 1.4  | 353   | 6.3   | 498  |
| /72Ne    | 316    |        | 8.319   | 41    | 37   | 98          | n.a.        | n.a.   | -1.2 | 365   | 6.7   | 52   |

\_\_\_\_\_

Burst strength not carried out on Greige fabrics as recieved

Test Results on GREIGE Fabrics ~ Reference state

| Fabri            | c ID       | Yarn<br>Tex | St Len        | Crses<br>3ce | Wales<br>3cm | Weight<br>gs# | Burst<br>Kn/sm | Distn<br>am | Spiral<br>deg | Y Str<br>g         | Extn<br>X  | Thkns<br>mic | Shr L<br>X | Shr W     |
|------------------|------------|-------------|---------------|--------------|--------------|---------------|----------------|-------------|---------------|--------------------|------------|--------------|------------|-----------|
|                  |            |             |               |              |              |               |                |             |               |                    |            |              |            | h<br>     |
| 18 Gaug          |            | -           |               | <b>54 0</b>  | 70 4         |               |                |             |               |                    |            |              |            |           |
| 20Ne<br>20Ne     |            |             | 0.323         | 54.9         | 38.1         |               | 710            | 22.2        | 9.5           | 355                | 7.9        |              | 1.4        |           |
|                  |            |             | 0.338         | 51.9         | 36.6         |               | 681            | 22.2        | 11.8          | 355                | 7.8        | 994          | 5.8        | 24.       |
|                  | 362<br>380 | 28.8        | 8.355         | 47.9<br>46.4 | 35.9         | • • •         | 669            | 22.6        | 13.3          | 336                | 7.6        | 988          | 9.6        | 21.       |
| 20Ne             |            |             | 0.373         | 43.9         | 34.3<br>33.1 |               | 618<br>574     | 22.9        | 14.9          | 345                |            | 1900         | 11.3       | 17.       |
| 20me<br>18 Gaugi |            |             | 8.373         | 43.7         | 22.1         | 1//           | 3/4            | 22.5        | 18            | 341                | 8          | 1038         | 16.1       | 16.       |
| 2/48Ne           |            |             | 8.324         | 52.5         | 38.8         | 282           | 897            | 21.5        | -1.1          | 653                | <b>D</b> 1 | 005          |            | 20        |
| 2/40Ne           |            |             | 0.338         | 49.8         | 36.5         |               | 856            | 22.5        | -0.5          | 800<br>65 <b>8</b> | 8.1        | 885<br>989   | -8.4       | 28.       |
| 2/48Ne           |            |             | <b>8.</b> 356 | 47.1         | 35.8         |               | 822            | 22.5        | -8.9          | 633                | 8.1<br>8.1 | 707<br>916   | 5.1<br>8.5 | 25.       |
| 2/40Ne           |            | 28.1        | <b>0.</b> 375 | 44.7         | 33.5         |               | 791            | 22.2        | -0.7          | 647                | 8.2        | 710<br>918   | 14.5       | 22.       |
|                  | 399        |             | 0.393         | 42.9         | 32.6         | 163           | 747            | 22.1        | -0.1          | 633                | 7.8        | 710<br>989   | 14.3       | 19.<br>17 |
| 4 Gauge          |            |             | 0:070         | 72.7         | 52.0         | 105           | 171            | 22.1        | -0.1          | 000                | /.0        | 707          | 1/.4       | 17        |
| 28Ne             |            | 20          | 0.289         | 61.4         | 43.8         | 179           | 608            | 15.8        | 17            | 276                | 9.5        | 867          | 2.7        | 25.       |
| 28Ne             |            |             | 0.301         | 56.9         | 42.1         | 159           | 576            | 18.5        | 18.9          | 257                | 8.9        | 952          | 15         | 21.       |
|                  | 321        |             | 8.32          | 54.1         | 40.7         | 158           | 535            | 18.8        | 20.1          | 236                | 7.1        | 965          | 13.9       | 19.       |
| 28Ne             |            |             | 0.335         | 50.8         | 39.9         | 148           | 494            | 19.3        | 21.8          | 252                | 18         | 957          | 18.2       | 18.       |
| 28Ne             |            |             | 8.35          | 48.6         | 39           | 146           | 471            | 19.5        | 25.3          | 249                | 7.8        | 849          | 23.1       | 14.       |
| 4 Gauge          | e : Te     |             |               |              |              | • • •         |                |             |               | ••••               |            | 417          | 2011       | 4.14      |
| /56Ne            |            |             | 0.291         | 58.9         | 42.8         | 169           | 762            | 15.1        | -0.6          | 453                | 8.9        | 789          | 6.8        | 24.       |
| /56Ne            | 386        | 21.1        | 0.304         | 56.3         | 41.3         | 158           | 712            | 14.8        | -2.1          | 469                | 7.8        | 774          | 11.2       | 21.       |
| /56Ne            | 321        | 21.2        | 0.315         | 53           | 40.4         | 157           | 703            | 18.8        | -2.3          | 441                | 9.8        | 882          | 14.1       | 21.       |
| /56Ne            | 337        | 21          | 0.332         | 49.3         | 38.6         | 150           | 685            | 19          | -3.5          | 447                | 9.5        | 888          | 17.1       | 16.       |
| /56Ne            | 354        | 21.9        | 0.351         | 46.9         | 36.3         | 133           | 653            | 18.2        | -4.2          | 478                | 9.4        | 836          | 28.9       | 13.       |
| 8 Gauge          | e:Si       | ngles       |               |              |              |               |                |             |               |                    |            |              |            |           |
| 36Ne             | 259        | 15.7        | 0.261         | 66.2         | 50.2         | 147           | 484            | 15          | 20.1          | 183                | 9.4        | 787          | 15.8       | 22.       |
|                  | 273        |             | 8.274         | 63.6         | 48.4         | 137           | 484            | 18.6        | 21.3          | 198                | 9.4        | 796          | 19.7       | 28        |
|                  | 287        |             | 0.281         | 59.1         | 46.9         | 132           | 456            | 18          | 24.5          | 188                | 9.3        | 876          | 28         | 15.       |
|                  | 301        |             | 8.298         | 56.6         | 46           | 134           | 412            | 18.9        | 26.6          | 184                | 9.7        | 869          | 19.5       | 15.       |
|                  | 316        |             | 0.315         | 53.8         | 44.4         | 123           | 391            | 18.8        | 26.5          | 190                | 11.1       | 860          | 22         | 14.       |
| 8 Gauge          |            |             |               |              |              |               |                |             |               |                    |            |              |            |           |
| /72Ne            |            |             | 0.256         | 64.4         | 49           | 146           | 642            | 14.9        | 0.6           | 326                | 9.4        | 719          | 11.4       | 23.       |
| /72Ne            |            | 15.9        |               | 61.8         | 47.3         | 137           | 625            | 14.4        | -1.2          | 350                | 7.3        | 682          | 14.4       | 19.       |
|                  | 287        | 16.3        | 0.283         | 58.1         | 45.2         | 128           | 621            | 19.2        | -2.4          | 335                | 9.5        | 812          | 23         | 15.       |
|                  | 301        |             | 0.296         | 55.5         | 42.4         | 124           | 568            | 18.7        | -2.9          | 339                | 18         | 809          | 21.7       | 15.       |
| /72Ne            | 316        | 15.8        | 0.311         | 51.3         | 41.4         | 115           | 544            | 17.6        | -3.2          | 354                | 9.1        | 757          | 21.5       | 13.       |

Test Results on DYED & FINISHED Fabrics - as recieved

| Eshe    | ic ID   |       | St Len  |      |      | -           |       |        | •    |     |             | Thkn |
|---------|---------|-------|---------|------|------|-------------|-------|--------|------|-----|-------------|------|
| raur    |         | Tex   | CR      | 3c#  | 3cm  | g5 <b>n</b> | Kn/se | 88<br> | deg  | g   | χ           | aic  |
| 18 Gau  | ge : Si | ngles |         |      |      |             |       |        |      |     |             |      |
| 20Ne    |         |       | 8.324   | 50   | 33   | 175         | 635   | 18.1   | 4.3  | 378 | 6.8         | 647  |
| 20Ne    | 344     | 28.4  | 0.34    | 46.4 | 32.5 | 161         | 647   | 17.3   | 1.3  | 342 | 7.4         | 643  |
| 20Ne    |         |       | . 8.357 | 43   | 32.3 | 154         | 578   | 18     | 3.2  | 373 | 6.3         | 669  |
| 20Ne    |         | 28.8  | 0.374   | 48.2 | 29.9 | 141         | 595   | 17.6   | 1.9  | 356 | 6.6         | 631  |
| 20Ne    |         |       | 8.393   | 36.8 | 29.6 | 129         | 569   | 17.6   | 2.8  | 361 | 7.3         | 641  |
|         | je : Tw |       |         |      |      |             |       |        |      |     |             |      |
| 2/40Ne  |         |       | 0.323   | 49.4 | 32.7 |             | 868   | 18.7   | -8.7 | 642 | 7.8         | 606  |
| 2/48Ne  |         |       | 8.338   | 46   | 32.7 | 159         | 821   | 18.4   | 8.8  | 635 | 7.2         | 612  |
| 2/40Ne  |         | 28.7  | 8.354   | 43.1 | 31.2 | 143         | 888   | 18.7   | 0.4  | 647 | 8 <b>.8</b> | 616  |
| 2/40Ne  |         |       | 8.376   | 39.4 | 28.6 | 127         | 771   | 18.4   | 1.5  | 633 | 7.1         | 595  |
| 2/40Ne  |         |       | 0.395   | 36.6 | 27.8 | 122         | 755   | 17.3   | 0.2  | 641 | 10.1        | 591  |
|         | e : Si  | •     |         |      |      |             |       |        |      |     |             |      |
| 28Ne    | 291     |       | 0.29    | 54.5 | 38.6 | 138         | 560   | 17.8   | 3.8  | 253 | 6.1         | 563  |
| 28Ne    | 306     |       | 0.305   | 49.8 | 37.3 | 123         | 520   | 17.6   | 4.8  | 277 | 7.4         | 559  |
| 28Ne    | 321     | 20.1  | 8.318   | 46.5 | 36.4 | 115         | 511   | 17.8   | 3.1  | 255 | 7.3         | 525  |
| 28Ne    | 337     |       | 0.335   | 43   | 35.2 | 114         | 486   | 18.5   | 3.4  | 260 | 7.3         | 534  |
| 28Ne    | 354     |       | 0.352   | 41.6 | 33.3 | 105         | 448   | 17.6   | 3.4  | 259 | 7           | 543  |
| 24 Gaug | e:Tw    | ofold |         |      |      |             |       |        |      |     |             |      |
| 2/56Ne  | 291     |       | 0.288   | 54.1 | 37.3 | 134         | 719   | 17.4   | 1.7  | 488 | 6.6         | 526  |
| 2/56Ne  |         |       | 0.304   | 50.1 | 36.5 | 124         | 666   | 17.3   | 1.5  | 471 | 7.5         | 522  |
| 2/56Ne  | 321     |       | 8.318   | 46.5 | 35.3 | 117         | 674   | 17.7   | 0.1  | 456 | 8.1         | 519  |
| ?/56Ne  | 337     | 20.6  | 8.334   | 43.1 | 33.9 | 110         | 641   | 17.5   | 0.5  | 495 | 8.8         | 526  |
| 2/56Ne  | 354     |       | 0.349   | 40.1 | 33.1 | 99          | 628   | 17     | 8.4  | 490 | 7.4         | 517  |
| -       | e:Si    | -     |         |      |      |             |       |        |      |     |             |      |
| 36Ne    | 259     |       | 0.258   | 59.6 | 43.4 | 108         | 428   | 17.4   | 2    | 204 | 5.9         | 497  |
| 36Ne    | 273     |       | 8.274   | 53.5 | 41.4 | 103         | 400   | 17.8   | 4.4  | 183 | 6.5         | 480  |
| 36Ne    | 287     | 15.2  | 8.287   | 50.8 | 39   | 95          | 429   | 18.2   | 3.1  | 184 | 5.9         | 468  |
| 36Ne    | 301     | 15.2  | 0.301   | 47.4 | 38.8 | 93          | 376   | 17.6   | 2.9  | 203 | 6.5         | 498  |
| 36Ne    | 316     |       | 0.315   | 43.1 | 37.6 | 86          | 354   | 17.2   | 5.2  | 198 | 7.3         | 475  |
| -       | e:Twi   | ofald |         |      |      |             |       |        |      |     |             |      |
| :/72Ne  |         | 15.8  | 0.253   | 68.4 | 42.6 | 116         | 606   | 17.2   | 1.3  | 363 | 6.3         | 471  |
| /72Ne   |         |       | 0.269   | 54.8 | 48.6 | 184         | 602   | 17.4   | 1.7  | 373 | 7.1         | 460  |
| !/72Ne  |         | 15.9  | 0.284   | 51.1 | 39.4 | 96          | 577   | 17.8   | 2.4  | 356 | 6.2         | 467  |
|         | 301     | 15.9  | 6.297   | 48.7 | 28   | 92          | 573   | 17.1   | 1.6  | 339 | 7.4         | 466  |
| !/72Ne  | 316     | 16    | 0.312   | 44.3 | 36.1 | 85          | 497   | 16.5   | 3.2  | 369 | 7.6         | 455  |

Test Results on DYED & FINISHED Fabrics - Reference State

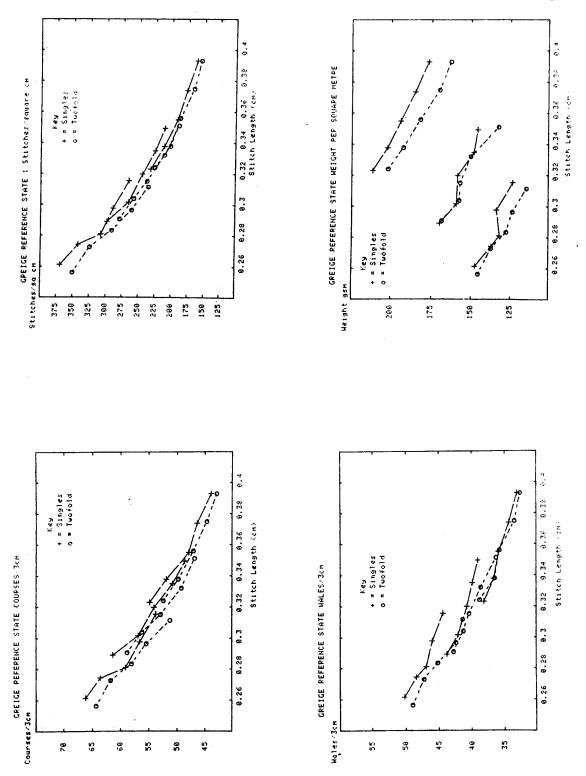
| Fabri   | c ID       | Yarn<br>Tex | St Len<br>cm | Crses<br>3cm | Wales<br>3cm | Weight<br>gs# | Burst<br>Kn/sm | Distn<br>mm | Spiral<br>deg | Y Str<br>g | Extn<br>% | Thkns<br>#ic | Shr L<br>% | Shr<br>Z |
|---------|------------|-------------|--------------|--------------|--------------|---------------|----------------|-------------|---------------|------------|-----------|--------------|------------|----------|
| 18 Gaug | <br>0 • Gi |             |              |              |              |               |                |             |               |            |           |              |            |          |
| 20Ne    |            | -           | 8.321        | 54.1         | 36.7         | 198           | 630            | 19.2        | 10.3          | 381        | 6.1       | 838          | 7.7        | 10.      |
|         | 344        |             | 8.337        | 50.4         | 35.3         | 190           | 698            | 19          | 18.4          | 361        | 7.3       | 818          | 8.2        | 7.       |
|         | 362        |             | 0.357        | 47.8         | 34.6         | 176           | 594            | 19.3        | 12.2          | 434        | 6.5       | 844          | 10.9       | 5,       |
| 20Ne    | 380        |             |              | 44.4         | 33.4         | 173           | 592            | 19.3        | 13            | 456        | 7.7       | 831          | 9.7        | 8.       |
| 28Ne    |            |             | 8.392        | 42.1         | 32.2         | 165           | 567            | 20.1        | 14.5          | 448        | 7.4       | 865          | 14         | 5.       |
| 8 Gaug  | e : Tw     |             |              |              |              |               |                |             |               |            |           |              | • •        |          |
| /48Ne   |            | 28          | 8.322        | 51.6         | 37.1         | 189           | 848            | 18.5        | -1.6          | 665        | 7.9       | 732          | 4.9        | 10.      |
| /48Ne   | 344        | 28.7        | 8.337        | 48.5         | 36.2         | 188           | 822            | 19.8        | -2.9          | 646        | 7.5       | 768          | 7.7        | 9.       |
| /49Ne   | 362        | 28.3        | 8.352        | 45.9         | 34.6         | 172           | 764            | 19.1        | -1.1          | 666        | 7.4       | 766          | 5.9        | 9.       |
| /48Ne   | 388        | 27.9        | 0.374        | 44           | 32.7         | 158           | 721            | 19.4        | -1            | 645        | 7.2       | 758          | 11.2       | 12.      |
| /48Ne   | 399        | 28          | 8.391        | 41.7         | 31.6         | 154           | 742            | 20.4        | -1.5          | 602        | 7.4       | 757          | 11.1       | 11.      |
| 4 Gauge | e:Si       | ngles       |              |              |              |               |                |             |               |            |           |              |            |          |
| 28Ne    | 291        | 28          | 8.29         | 57.9         | 43.1         | 160           | 537            | 19.3        | 12.3          | 291        | 7.3       | 704          | 7.8        | 7        |
| 28Ne    | 386        | 20.2        | 0.303        | 55.2         | 42.1         | 151           | 510            | 18.9        | 12.9          | 312        | 7.3       | 723          | 10.5       | 7.       |
| 28Ne    | 321        | 19.8        | 0.32         | 52.6         | 48           | 145           | 488            | 19.9        | 15.2          | 287        | 7.5       | 721          | 11.7       | 8.       |
|         | 337        | 20.2        | 0.332        | 49.8         | 39           | 140           | 463            | 19.5        | 17.6          | 388        | 6.7       | 753          | 14.2       | 8.       |
| 28Ne    | 354        | 20.1        | 0.35         | 47.2         | 37.6         | 133           | 438            | 19.6        | 19.6          | 286        | 7.6       | 749          | 12.7       | 6.       |
| 4 Gauge |            | ofold       |              |              |              |               |                |             |               |            |           |              |            |          |
| /56Ne   | 291        |             | 0.285        | 57.1         | 42.5         | 156           | 680            | 18.3        | -2.9          | 513        | 7.8       | 637          | 6.2        | 10.      |
| /56Ne   | 306        |             | 0.301        | 53.4         | 41.1         | 151           | 668            | 19.5        | -4.4          | 463        | 7.2       | 672          | 6.8        | 11.      |
|         | 321        |             | 0.314        | 51.3         | 39.3         | 141           | 667            | 19.8        | -4.6          | 483        | 7.5       | 664          | 8.9        | 10.      |
|         | 337        |             | 0.33         | 47.9         | 37.9         | 134           | 634            | 20          | -4.3          | 474        | 7.5       | 673          | 10.1       | 9.       |
| /56Ne   |            |             | 8.348        | 45.8         | 36.6         | 128           | 631            | 20.4        | -5.3          | 467        | 7         | 676          | 12.4       | 18.      |
| 8 Gauge |            | •           |              |              |              |               |                |             |               |            |           |              |            |          |
|         | 259        |             | 8.257        | 65.7         | -48.6        | 134           | 443            | 19.2        | 13.1          | 217        | 5.7       | 652          | 9.1        | 10.      |
|         | 273        | 15.3        | 8.273        | 61.5         | 46.3         | 130           | 415            | 19.3        | 14.9          | 199        | 5.6       | 663          | 13         | 9.       |
|         | 287        | 15.3        | 0.285        | 57.6         | 45.7         | 125           | 402            | 19.7        | 16.6          | 204        | 6.3       | 662          | 13.6       | 12       |
|         | 301        | 15.4        | 0.298        | 55.1         | 44.8         | 121           | 398            | 19.6        | 18.8          | 213        | 7         | 688          | 14.5       | 9.       |
|         | 316        |             | 0.313        | 50.3         | 43.5         | 115           | 362            | 19.2        | 21.9          | 205        | 7.1       | 679          | 15.5       | 6.       |
| B Gauge |            |             |              |              |              |               |                |             |               |            |           |              |            |          |
|         | 259        |             | 0.253        | 62.4         | 48.1         | 135           | 599            | 18          | -3.6          | 400        | 7.4       | 574          | 6.2        | 9.       |
|         | 273        | 15.9        | 8.268        | 68           | 47.7         | 128           | 603            | 19.2        | -3.9          | 373        | 6.3       | 684          | 8.8        | 13.      |
|         | 287        | 15.7        | 8.283        | 56.5         | 45.7         | 121           | 582            | 19.3        | -4.5          | 358        | 6.1       | 689          | 10.4       | 11.      |
|         | 301        | 15.8        | 0.295        | 53.2         | 43.6         | 116           | 542            | 28          | -4.2          | 361        | 7.1       | 681          | 9.5        | 11.      |
| /72Ne   | 316        | 15.8        | 8.31         | 49           | 41           | 108           | 532            | 19          | -4.2          | 356        | 7.3       | 598          | 11.1       | 10.      |

## Test Results on MERCERISED, DYED & FINISHED Fabrics - as recieved

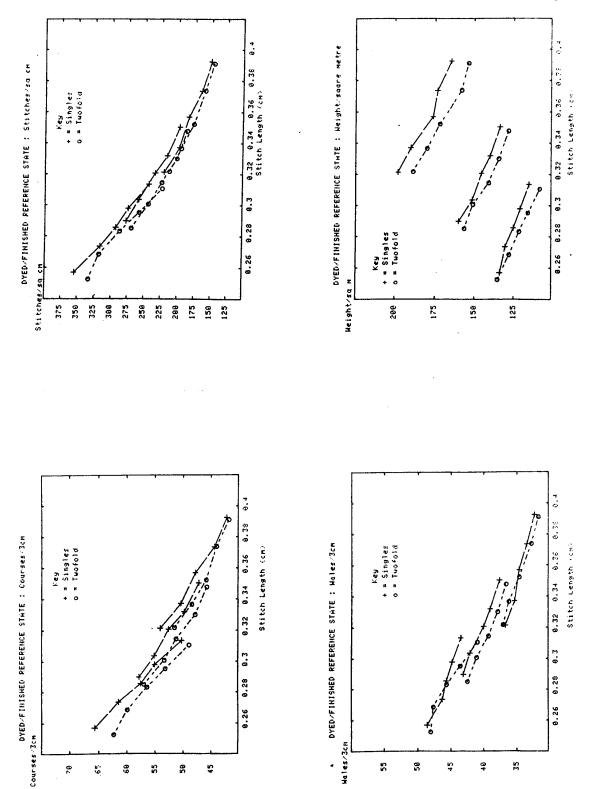
| Fabri  | ic ID       | Yarn<br>Tex | St Len<br>Cm | Crses<br>3ce | Wales<br>3cm | Weight<br>gsm |      | Distn | Spiral<br>deg | Y Str<br>q  | Extn<br>% | Thkn:<br>mic |
|--------|-------------|-------------|--------------|--------------|--------------|---------------|------|-------|---------------|-------------|-----------|--------------|
| 19 6   | <br>1e : Si |             |              |              |              |               |      |       |               |             |           |              |
|        | 327         | -           | 0.389        | 42.5         | 48           | 169           | 865  | 14.7  | 0.3           | 471         | 0         | 628          |
| 20Ne   |             |             | 8.321        | 48.5         | 39.1         | 171           | 855  | 16.2  | 0.3<br>0.4    | 455         | 9<br>8    | 020<br>683   |
| 20Ne   |             |             | 8.337        | 37.4         | 38.4         | 152           | 804  | 15.2  | -0.2          | 475         | 7.3       | 611          |
| 20Ne   |             |             | 0.352        | 35.9         | 35.7         | 156           | 756  | 16    | 8.9           | 448         | 8.2       | 607          |
| 20Ne   | 399         |             | 0.373        | 33           | 36           | 143           | 793  | 16.1  | 2.4           | 482         | 9         | 684          |
|        | ie : Tw     |             | 010/0        |              | 00           | 110           | 110  | 1011  | 2.17          | TVL         | ,         | 084          |
| 2/40Ne |             |             | 0.303        | 42           | 48           | 168           | 1066 | 15.5  | -2.2          | 716         | 9.4       | 543          |
| 2/40Ne |             |             | 0.315        | 41.3         | 38.4         | 163           | 988  | 15.4  | -2.7          | 727         | 9         | 599          |
| 2/40Ne |             | 38.2        | 0.331        | 38.9         | 36.7         | 153           | 991  | 16.3  | -1.4          | 716         | 11        | 596          |
| 2/48Ne |             | 30.7        | 8.348        | 35.7         | 35.6         | 146           | 974  | 15.2  | -1.5          | 733         | 11.1      | 592          |
| 2/48Ne |             |             | 0.369        | 31.1         | 35           | 125           | 899  | 13    | -1.6          | 723         | 10.2      | 576          |
|        | e:Si        |             |              |              |              |               |      |       |               |             |           |              |
| 28Ne   | 291         | -           | 8.276        | 47.9         | 46.1         | 141           | 652  | 16.4  | 0.5           | 29 <b>9</b> | 8.2       | 532          |
| 28Ne   | 386         |             | 8.289        | 42.8         | 46           | 126           | 627  | 14.7  | 8.8           | 295         | 6.5       | 543          |
| 28Ne   | 321         |             | 0.305        | 38.5         | 42.7         | 118           | 588  | 14.3  | 9.8           | 313         | 7.8       | 491          |
| 28Ne   | 337         |             | 0.321        | 35.8         | 41.5         | 112           | 574  | 14.9  | 0.6           | 301         | 7.5       | 498          |
| 28Ne   | 354         | 21.2        | 0.338        | 33.1         | 41           | 100           | 517  | 12.9  | 0.3           | 388         | 7.6       | 503          |
| 4 Gaug | e : Tw      | ofold       |              |              |              |               |      |       |               |             |           |              |
| !/56Ne | 291         | 22.2        | 0.267        | 49.9         | 45.6         | 144           | 892  | 15.1  | 2             | 537         | 11.4      | 508          |
| 1/56Ne | 306         | 22.4        | 0.28         | 42.9         | 4412         | 125           | 799  | 15.8  | -3.1          | 535         | 8.3       | 501          |
| !/56Ne | 321         | 22.4        | 0.293        | 39.9         | 41.3         | 121           | 768  | 14.3  | -2.2          | 539         | 8.8       | 584          |
| /56Ne  | 337         | 22.3        | 0.311        | 37.3         | 41.5         | 114           | 775  | 13.8  | -0.5          | 564         | 9.5       | 498          |
| !/56Ne | 354         | 22.5        | 8.327        | 34.5         | 38.9         | 189           | 727  | 13.6  | -8.6          | 551         | 10.4      | 487          |
| 8 Gaug | e:Si        | ngles       |              |              |              |               |      |       |               |             |           |              |
| 36Ne   | 259         | 15.9        | 8.25         | 48.5         | -51.9        | 186           | 531  | 14.5  | 2.2           | 230         | 7.2       | 442          |
| 36Ne   | 273         | 16.1        | 0.26         | 46.3         | 50.6         | 111           | 523  | 14.5  | 8.6           | 236         | 7.5       | 479          |
| 36Ne   | 287         | 16.7        | 0.274        | 41.1         | 46.9         | 97            | 489  | 13.2  | 1             | 232         | 6.5       | 435          |
| 36Ne   | 301         | 15.9        | 0.29         | 37.4         | 49.1         | 98            | 425  | 11.6  | 8             | 234         | 6.3       | 454          |
| 36Ne   | 316         | 16.2        | 8.306        | 35.2         | 44.6         | 85            | 426  | 11.1  | 1.3           | 239         | 6.1       | 433          |
| 8 Gaug | e : Two     |             |              |              |              |               |      |       |               |             |           |              |
| /72Ne  | 259         | 17.2        | 0.239        | 54.2         | 51.9         | 123           | 775  | 15.2  | -0.7          | 399         | 10.1      | 451          |
| /72Ne  | 273         |             | 0.249        | 48.9         | 49.1         | 113           | 719  | 14.9  | -1.6          | 487         | 10.1      | 459          |
| /72Ne  |             |             | 0.267        | 42.8         | 48.7         | 102           | 647  | 12.5  | 0.2           | 401         | 8.6       | 432          |
|        | 301         | 16.9        | 8.281        | 41           | 44.7         | 97            | 654  | 14.1  | 0.4           | 399         | 8.4       | 426          |
| /72Ne  | 316         | 17          | 8.296        | 37.8         | 45.8         | 89            | 630  | 12.1  | -8.7          | 486         | 8.7       | 450          |

!

## **IIC/TEBE TRIALS 1984**


Test Results on MERCERISED, DYED & FINISHED Fabrics - Reference State

| Fabri    | c ID   | Yarn<br>Tex | St Len<br>cm | Crses<br>3cm | Wales<br>3cm | Weight<br>gsm | Burst<br>Kn/se | Distn | Spiral<br>deg | Y Str<br>g | Extn<br>% | Thkns<br>mic | Shr L<br>Z | Shr<br>X |
|----------|--------|-------------|--------------|--------------|--------------|---------------|----------------|-------|---------------|------------|-----------|--------------|------------|----------|
| 18 Gaug  | <br>Ci |             | *******      |              |              |               |                |       |               |            |           |              |            |          |
| 28Ne     |        | -           | 8.309        | 49.4         | 42.9         | 213           | 810            | 18.5  | 2.9           | 477        | 8.8       | 873          | 14.6       | 7.       |
| 20Ne     |        |             | 8.323        | 48.4         | 41.5         | 212           | 805            | 20.1  | 9.1           | 463        | 7.6       | 825          | 16.7       | 4.       |
| 20Ne     |        |             | 0.339        | 45           | 40.4         | 197           | 780            | 19.5  | 6.3           | 472        | 7.2       | 891          | 17.9       | 8        |
| 20Ne     |        |             | 8.355        | 44.3         | 39.6         | 200           | 764            | 21.1  | 18.6          | 451        | 7.3       | 859          | 18.6       | 8.       |
| 20Ne     |        |             | 8.373        | 41           | 38.4         | 193           | 735            | 20.5  | 12.5          | 447        | 7.5       | 859          | 20.9       | 6        |
| 18 Gauge | e : Tw |             |              |              |              |               |                |       |               |            |           | •••          |            | •        |
| 2/40Ne   |        |             | 0.305        | 47.2         | 44.9         | 207           | 1189           | 17.7  | -5.6          | 788        | 9.2       | 718          | 10.1       | 12       |
| 2/40Ne   |        |             | 0.315        | 45.4         | 43.6         | 199           | 1865           | 18.1  | -5.6          | 728        | 8.9       | 779          | 10.8       | 11.      |
| 2/40Ne   | 362    |             | 8.33         | 42.9         | 42.2         | 195           | 1829           | 19.2  | -7.5          | 725        | 11.2      | 810          | 10.9       | 12.      |
| 2/48Ne   | 388    | 38.4        | 0.349        | 39.4         | 42.2         | 187           | 1816           | 18.4  | -9.1          | 735        | 10.3      | 817          | 18.4       | 14.      |
| 2/40Ne   | 399    |             | 0.369        | 33.9         | 42.5         | 171           | 1009           | 17.8  | -9.9          | 735        | 10.4      | 784          | 10.6       | 18.      |
| 24 Gauge | : Si   | ngles       |              |              |              |               |                |       |               |            |           |              |            |          |
| 28Ne     | 291    | 21.3        | 0.275        | 56.2         | 50.1         | 181           | 617            | 20    | 9.4           | 308        | 7.4       | 728          | 15.7       | 8.       |
| 28Ne     | 306    | 21.3        | 0.289        | 51.8         | 49.2         | 168           | 646            | 19.7  | 6.9           | 336        | 7         | 774          | 18.2       | 7.       |
| 28Ne     | 321    | 21.1        | 0.303        | 49.4         | 49.4         | 169           | 688            | 20.1  | 12.8          | 321        | 7.1       | 728          | 21.4       | 11       |
| 28Ne     | 337    | 21.1        | 0.317        | 47           | 47.3         | 164           | 573            | 28.5  | 13.4          | 311        | 7.1       | 755          | 24         | 19.      |
| 28Ne     | 354    | 21.1        | 0.335        | 44.3         | 48.2         | 156           | 533            | 19.9  | 10.3          | 319        | 8.1       | 873          | 26.1       | 12.      |
| 4 Gauge  | : Tw   | ofold       |              |              |              |               |                |       |               |            |           |              |            |          |
| :/56Ne   |        | 22.4        | 8.265        | 54.8         | 50.7         | 182           | 899            | 18.5  | -7.4          | 532        | 9         | 665          | 10.4       | 10.      |
| /56Ne    | 386    | 22.2        |              | 45.3         | 52.9         | 159           | 948            | 17.4  | -8.3          | 536        | 8.5       | 697          | 6.6        | 17       |
|          | 321    |             | 8.294        | 43.8         | 51.8         | 157           | 911            | 16.9  | -6.7          | 557        | 8.7       | 711          | 7.7        | 16.      |
|          | 337    |             | 8.311        | 48.8         | 51.4         | 155           | 932            | 18.1  | -9.6          | 558        | 9.6       | 729          | 8.7        | 19.      |
| /56Ne    |        |             | 8.326        | 38.9         | 49           | 145           | 846            | 17.5  | -11.8         | 563        | 8.2       | 702          | 11         | 16.      |
| 8 Gauge  |        | -           |              |              |              |               |                |       |               |            |           |              |            |          |
|          | 259    | 16          | 0.249        | 59.1         | 59.1         | 151           | 492            | 18.8  | 10.5          | 221        | 6.1       | 644          | 17.2       | 12.      |
|          | 273    |             | 8.258        | 55.2         | 58.4         | 145           | 567            | 19.4  | 4.7           | 226        | 7.8       | 725          | 17.9       | 12.      |
|          | 287    |             | 8.273        | 50.3         | 57           | 135           | 560            | 19    | 5.7           | 249        | 6.6       | 728          | 18.6       | 15.      |
|          | 301    | 15.8        | 8.291        | 47.7         | 57.5         | 134           | 502            | 18.5  | 4.9           | 227        | 7         | 769          | 23.2       | 16.      |
|          | 316    | 15.9        | 0.303        | 44           | 54.5         | 125           | 462            | 19.6  | 8             | 234        | 6         | 729          | 23.8       | 16.      |
| 8 Gauge  |        |             |              |              |              | . – .         |                |       |               |            |           |              |            |          |
| /72Ne    |        | 17          | 0.238        | 59.2         | 59.4         | 156           | 787            | 18.1  | -7.9          | 383        | 8.7       | 592          | 9.1        | 12.      |
|          | 273    | 17.5        |              | 54.6         | 58.7         | 147           | 786            | 18.4  | -9.7          | 395        | 9.8       | 648          | 9.8        | 14.      |
|          | 287    | 17          | 0.268        | 46.6         | 59.6         | 134           | 776            | 16.9  | -8.4          | 398        | 9         | 652          | 8.1        | 18.      |
|          | 301    | 17          | 0.279        | 46.7         | 57.7         | 138           | 731            | 18.7  | -10.4         | 388        | 7.4       | 615          | 13.1       | 20.      |
| /72Ne    | 316    | 16.7        | 0.295        | 42.2         | 57.3         | 127           | 747            | 17    | -10.5         | 413        | 8.9       | 671          | 10.5       | 21.      |


Coefficients of the STARFISH Equations

|            | Coef   | Coef   | Coef   | Corel | Coef    | - Coef | Coef   | Core  |
|------------|--------|--------|--------|-------|---------|--------|--------|-------|
|            | 8      | b      | с      | Rsq   | a       | b      | С      | Rsq   |
| GREIGE     |        | SI     | NGLES  |       |         | TWOFO  | LD     |       |
| Tex        | 0.786  | n.a.   | n.a.   | 8.998 | 8.986   | n.a.   | n.a.   | 0.99  |
| St Length  | 8.986  | n.a.   | n.a.   | 0.998 | 0.986   | n.a.   | n.a.   | 0.99  |
| Courses    | -5,585 | 6.598  | 0.643  | 8.983 | -5.937  | 6.352  | 0.738  | 8.98  |
| Wales      | 18.226 | 2.955  | -1.254 | 0.995 | 3.136   | 3.769  | -0.364 | 0.994 |
| Stitches   | 51.589 | 23.035 | -1.416 | 0.996 | -9.239  | 23.73  | 0.305  | 8.998 |
| Weight     | 15.411 | 2.198  | n.a.   | 0.991 | -4.364  | 2.344  | n.a.   | 8.989 |
| DYED       |        |        |        |       |         |        |        |       |
| Tex        | 8.972  | n.a.   | n.a.   | 8.998 | 0.972   | n.a.   | n.a.   | 0.998 |
| St Length  | 0.981  | n.a.   | n.a.   | 0.998 | 0.981   | n.a.   | n.a.   | 8.998 |
| Courses    | -7.773 | 6.735  | 8.889  | 0.992 | -5.626  | 5.945  | 0.806  | 0.99  |
| Wales      | 11.876 | 2.671  | -1.339 | 8.996 | 6.5     | 3.334  | -0.847 | 8.989 |
| Stitches   | 44.083 | 21.746 | -1.208 | 8.999 | 20.478  | 21.125 | -0.454 | 8.989 |
| Weight     | 13.011 | 2.091  | n.a.   | 0.996 | 0.63    | 2.139  | n.a.   | 0.996 |
| IERCERISED |        |        |        |       |         |        |        |       |
| Tex        | 1.037  | n.a.   | n.a.   | 0.996 | 1.037   | n.a.   | n.a.   | 8.996 |
| St Length  | 0.93   | n.a.   | n.a.   | 8.987 | 0.93    | n.a.   | n.a.   | 6.987 |
| Courses    | -9.665 | 5.855  | 1.401  | 8.94  | -18.839 | 7.106  | 2.058  | 8.954 |
| Wales      | 23.85  | 1.91   | -2.774 | 0.981 | 29.231  | 0.96   | -3.248 | 0.982 |
| Stitches   | 97.952 | 19.643 | -2.102 | 8.99  | 58.074  | 19.966 | -1.393 | 0.991 |
| Weight     | 24.664 | 1.987  | n.a.   | 0.97  | 18.383  | 1.999  | n.a.   | 8.974 |

