

Research Record No. 177

K2 Supplement Knitting - 18 Gauge Production and Greige Dimensions

James T. Eaton September 1983

Classification: Key Words: Digital Version:

Fabrics/Knitted/Production Single Jersey, Grey Dimensions October 2014

Contents

- 1. Introduction
- 2. Machinery and Instrumentation
- 3. Knitting Plan
- 4. Fabric Production
 - 4.1. Fault Rate
 - 4.2. Stitch Length
- 5. Grey Fabric
- 6. Fully Relaxed Grey Fabric Dimensions
 - 6.1. Yarn
 - 6.2. Stitch Length
 - 6.3. Fabric Weight
 - 6.4. Courses
 - 6.5. Wales
 - 6.6. Spirality Angles

Tables

Yarn Test Sheets Production Sheets Fault Rates Grey Fabric Test Sheets Grey Fabric Test Sheets

Diagrams

Stitch Length (Average) As Knitted	Stitch Length - Bw/Aw
Weight - Bw/Aw	Courses - Bw/Aw
Wales - Bw/Aw	Spirality- Bw/Spirality

APPENDIX A: compares the fully relaxed dimensions against the original K2 dimensions.

APPENDIX B: compares the fully relaxed dimensions against the STARFISH 1 model

Observations

Introduction

In the original K2 project, no 18-gauge single jersey fabrics were mercerised because, at the time, all the commercial interests were in the finer gauge fabrics from 24- and 28-gauge machines. Upon reflection and after seeing the effect of mercerisation on some of the heavier 24-gauge fabric it was thought that we may be missing out on a possible market by not looking at the full potential of mercerising through the full spectrum of single jersey machines.

As we were planning to carry out further mercerising trials at the firm of TEBE in Portugal with some of the reserve fabric from the original K2 project, it was decided that we should knit two sets of 18-gauge fabrics in both singles and two-fold over five stitch lengths with a resultant yarn count of Ne 20. These will be mercerised with the K2 fabrics to complete the picture.

Machinery and Instrumentation

The knitting machine used in these trials was an 18-gauge Camber Velnit, 26" diameter, 36 feeder, 1500 needles, fitted with triptape positive feed and side creels. Course length (run-in) was measured using a Welmstar electronic course length yarn speed meter. Yarn input tension was measured using a Schmidt yarn tension meter.

Knitting Plan

Construction: plain single jersey

		Stitch length (cm)	T.F.	Revs
a)	Ne 1/20's	.327	16.61	3750
		.344	15.79	3333
		.362	15.00	3125
		.380	14.29	2708
		.399	13.61	2500

x 2 = 10 pieces approximately 75 metres long. First piece marked /6, second piece marked /15.

		Stitch length (cm)	T.F.	Revs
a)	Ne 2/40's	.327	16.61	3750
		.344	15.79	3333
		.362	15.00	3125
		.380	14.29	2708
		.399	13.61	2500

x 2 = 10 pieces approximately 75 metres long. First piece marked /6, second piece marked /15.

Yarns Used

Ne1/20 quality KCW

Ne 2/40 quality SLX

Yarns purchased from Courtaulds - similar qualities as per the original K2 work. The singles yarn was ordered with a Z twist to a twist factor of 3.5.

Upon delivery and before knitting began the yarns were checked in the IIC laboratories for count, twist factor, coefficient of friction against steel, twist liveliness, single-end strength and extension. Unfortunately, upon delivery of the yarns to TRD it was discovered that they had delivered short against the amount ordered and therefore a further 22 kilos had to be produced to complete the original order. This additional amount was also tested at TRD.

- a) the resultant counts tested were within 1 English yarn count
- b) the twist factor tested out at 3.3 (singles) and 2.3 and 2.4 on the two-fold.
- c) the coefficient of friction was below 0.15
- d) SES of the singles tested out at 405.2g
- e) SES for the two-fold tested out at 701.6g and 670.95g respectively.
- f) extension of the singles was 6.5% and the two-fold 6.4% and 6.9%

(See test sheets - Tables 1 and 2)

Fabric Production

Coding of the pieces was identical to the original K2 and suffixed Supp. No problems were encountered during the knitting.

The machine speed was maintained at 15 rpm. As an ongoing check to ascertain if there is any correlation between fabric tightness and fault rates, the fabric faults were recorded.

Production sheets are shown in Tables 3 and 4.

Fault Rate

A detailed analysis of the fault rate, averaged to faults per 100,000 metres of yarn was carried out. It shows that in the case of the singles yarn there is evidence that the tighter fabrics give a higher fault rate. In the case of the twofold yarn there is no evidence of tightness affecting the fault rate.

See Tables 5 and 6.

Stitch Length

Analysis of the stitch length shows that the target stitch length was achieved to a very high degree of accuracy and in all cases was kept to within $\pm 1\%$ of target.

See Figure 1.

Grey Fabric

Four metres of grey fabric was taken from the first roll produced on each stitch length and submitted for testing: five pieces from the singles yarn and five pieces from the twofold yarn.

See Test Sheets - Tables 7, 7A and 8, 8A.

Fully Relaxed Grey Fabric Dimensions

6.1. Yarn Count

Change in **Tex** after the TRD relaxation procedure (from test pieces) is as follows:

1/20Ne

.327	.344	.362	.380	.399	ave
-0.4	-0.1	-0.7	-0.5	-0.4	-0.42

2/40Ne

.327	.344	.362	.380	.399	ave
+0.2	-0.1	-0.1	-0.2	+0.2	0.0

6.2 Stitch Length

Change in Stitch Length (mm) after relaxation.

1/20Ne

.327	.344	.362	.380	.399	ave
-0.06	-0.07	-0.07	-0.06	-0.06	-0.064

2/40

.327	.344	.362	.380	.399	ave
-0.04	-0.05	-0.06	-0.05	-0.06	-0.052

6.3 Fabric Weight AW gsm

	.327	.344	.362	.380	.399
Singles	211.6	202.2	194.1	185.2	176.9
Twofold	202.0	192.6	182.1	170.1	163.0

6.4 Courses /3cm AW

	.327	.344	.362	.380	.399
Singles	54.9	51.9	47.9	46.4	43.9
Twofold	52.5	49.8	47.1	44.7	42.9

6.5 Wales /3cm AW

	.327	.344	.362	.380	.399
Singles	38.1	36.6	35.9	34.3	33.1
Twofold	38.8	36.5	35.8	33.5	32.6

6.6 Spirality Angle AW

	.327	.344	.362	.380	.399
Singles	9.5	11.8	13.3	14.9	18.1
Twofold	-1.1	-0.5	-0.9	0.2	-0.1

International Inst Kingston Road, Dic Manchester M2O 8RC TECHNICAL RESEARCH	titu dsbu d. d D:	ute Fo Jry, IVISIO	Dr Cot	ton,	NAM SAM	IE: 7.		1 2 3	4	5678
Knitting Ref. No.	·	Testi	ng La 9	b. Ref 64-	. No.	Date	Subm:	itted	Date	Returned
Yarn Details: // 2/	20	5°CC.	FRO	M CO	112TA	ULD	5, F.O.	2 18	6-5	NGLE JEIZ
	Τ	1/2	0	21	ALSU	s				TESTED BY
RICTION	0	0.14	95ka 0.03	0.13	95%cu 0.03					
CUNT TEX.	V	29.0	0.5	R 28.7	0.3					
URNS/	V	583.1	20.8	862.8	48.0					
FOLDED	V			428.8	22.3					
WIST FACTOR Tox System.	V	31.4		22.9						
WIST LIVELINESS	V	22.0	0.6	4.9	0.4					
STER BREAKING LOAD										
STER EXTENSION										
STER EVENESS										
l ² S	V	405.2	13.0	701.6	12-5					
% oct.		6.5	0.2	6.4	0.1					
		_							_	

COMMENTS:

High Friction on cone No. 6 of 2 fold. High Friction on cone No. 1 of singles

cc:

International Institute For Cotton, Kingston Road, Didsbury, Manchester M2O BRD. TECHNICAL RESEARCH DIVISION.

NAME: J. T. BATON

SAMPLE NO: 9-10-11-12. 4 CONES.

Knitting Ref. No	•	Testi	.ng La	ab. Re 971	f. No.	Dat	te Subr - <i>5</i> - 1	nitted 83	Dat 23	e Returned - 5.83
Yarn Details: 2 Second dull	14	0 4n 14-9	am a	aunt 2 Kg.	to	10 comy	nkite	ard	er.	
;		2/4	o'cc	ſ	RESL	ILTS				TESTED BY
FRICTION	1	0.13	0.03	3	-				-	
COUNT C.C	V	R28.4	0.2					_		
TURNS	Y	8383	29.5		-		-			
TWIST FACTOR	V	21.5	14.1				1			
TWIST LIVELINESS	V	1.1	0.3				-	-		
USTER BREAKING LOAD								-		
USTER EXTENSION								-		
USTER EVENESS								-		
SBS	\checkmark	67095	(3.5							
% EXT	1	6.9	D•1							
	-							<u></u>		

COMMENTS:

on Core Nº 11 . High Friction

		-	~ 1	- 1	-1	- 1	1	1	1	~1	1	1	1	-+		-+	-+	-+	ot	0	÷
		Pie	8.25	9.75	7.75	18.75	St: 91	25.41	17.10	0.8	55-91	6.FI	16.5	R.25	15.0	15.51	15:25	16-25	14-50	16.00	-
0		Produced	3750 1	3750	3750	3750	3333	3333	3333	3333	3125	3125	3:25	3125	3010	2708	3408	3708	2500	2500	
Needles: /5C	BE	width on Roll	Sa. Sins	82. OCHS	80.5 CMS	82'Scms	82.0 curs	20.0 cms	82.5 cms	SA. ScHS	81.Scms	82 OCMS	Schio chis	S.R. O CMS	80.0 cms.	Shid cms	S'a'OCMS	5400.88	81.5 CMS	81.5 cms	
Number of	AT TE	Width at Roller	83. 5 CHS	54.0 cve	31. Sems	82.Srms	82. OCNS	V2. Ocms	5400.0%	82.01ms	82.0 cms	82.0 cns	S2 DOM	S. Ocms	84.0 cms	81.5cms	SMO CMS	5400.28	SHJO.88	83 O CMS	
	C TILIALS	C/3cm on Machine	12 /453)	5+1 +++	44 44	45/45	40/40	39/40	39 40	14/14	36/36	36/36	35/36	36/36	32/32	32/32	33 /31	32/33	39.5/30	30/30	
Gauge: 18	ACENI SIN	Mean CL at End of Piece	M 9.68th	N 0.16#	W S. 0/5+	N 0.164	516.0 W	5160 V	515.0 W	515.0 V	SHR.O V	54401	543.0 N	543.0 W	M0.125	5%1.0 N	541.0 W	541.0 W	598.5 V	5980 N	
1	G FOR ME	Mean CL at tart of Piece	W 5.054	N 9.06+	HOIS N	N 0.164	SIS.0 W	515.0 W	515.0 M	515.0 W	542.0 W	N O'RHS	544.0V	543.0 W	571.0 W	572.0 W	541.0 V	540.0 W	598.0W	598.0 W	
RED VELN	18	ourse Length Target S	5.06+	5.064	5.064	5.06+	516.0	516.0	516.0	516.0	543.0	543.0	543.0	543.0	570.0	0.0fs	570.0	570.0	598.5	599.5	1 2 2
: CAM		0	161	151	9	15 1	16	13	9	15	e	15	9	115	9	15	-	115	16	1	2
Machine	Sup	iece No.	1337	13371	1324	1334	1-344	344	344	344	362.	3631	362	363	1380	1280	1380/	1340	1390	12901	1110
	KZ		8/1.3	5/1-20	13-40	04.8/8	04-8/8	8 2-40	8 1-20	08-1/8	81-20	8/1-30	8 2-40	8/2-10	04.8/8	210-40	Ce-1/8	11-30	1-20	to in	DIA DIA
			-	a	00	00	~	a	-	2	-	-	-	1	-	-	-	-			

Machine: C	AMBER VIS	LNIT	Gauge:/	8	Number	of Needles: 15	00	-
Ka su Piece No.	P. //	Mean CL at Start of Piece	Mean CL at End of Piece	NG TRIA C/3cm on Machine	Width at Roller	Width on Roll	Revs Produced	Piec.
18/2-40/399/	\$ 598.5	598.0 W	598.0	29/29.5	81.0 cms	80.0 cmg	2500	14-80
18/2-40/399/15	598.5	598.0 W	598.0	29.5/29.5	81.0 cms	80 . 0 CMS	2500	15.4

Table 5

YARN COUNT NE 1/20Z MA

-

MACHINE GAUGE: 18

PIECE NO.	FAULTS	LENGTH OF YARN KNIT TED PER PIECE-METRE	LENGTH OF YARN KNIT TED PER SL METRES	CALCULATED FAULTS PER 100,00M OF YARN
18/1-20/327/6	8	662,175	1,324,350	1.21)
18/1-20/327/15	7	662,175		1.06) 1.13
18/1-20/344/6	7	619,138	1,238,276	1.13)
18/1-20/344/15	6	619,138		0.97) 1.05
18/1-20/362/6 18/1-20/362/15	6 6	610,875 610,875	1,221,750	0.98) 0.98) 0.98)
18/1-20/380/6	4	555,681	1,111,362	0.72)
18/1-20/380/15	2	555,681		0.36) 0.54
18/1-20/399/6	5	538,650	1,077,300	0.93)
18/1-20/399/15	2	538,650		0.37) 0.65

TOTAL LENGTH OF YARN KNITTED = 5,973,038TOTAL FAULTS = 53AVERAGE FAULTS PER 100,000 METRES OF YARN = 0.88

YARN COUNT NE 2/40

MACHINE GAUGE: 18

PIECE NO.	FAULTS	LENGTH OF YARN KNIT TED PER PIECE-METRE	LENGTH OF YARN KNIT TED PER SL METRES	CALCULATED FAULTS PER 100,000M OF YARN
18/2-40/327/6	2	662,175	1,324,350	0.30) 0.15
18/2-40/327/15	0	662,175		0) 0.15
18/2-40/344/6	0	619,138	1,238,276	0) 0.08
18/2-40/344/15	1	619,138		0.16) 0.08
18/2-40/362/6	0	610,875	1,221,750	0) 0.08
18/2-40/362/15	1	610,875		0.16) 0.08
18/2-40/380/6	3	555,681	1,111,362	0.72)
18/2-40/380/15	1	555,681		0.36) 0.54
18/2-40/399/6	2	538,650	1,077,300	0.37)
18/2-40/399/15	1	538,650		0.18) 0.27

TOTAL LENGTH OF YARN KNITTED	=	5,973,038
TOTAL FAULTS	=	11
AVERAGE FAULTS PER 100,000		
METRES OF YARN	=	0.18

Полните <	INTERMATIONAL	INSTI	TUTE FO	DR COTT		KNITTINA	ING REF.	Γ.	LAB.	REF. O	1852	IBMITTED BY	37G Dr	E.13 Ju	8 23	
IC WETCHT BU (52,4) 2.5 1.5 <t< td=""><td>STS REQUIRED</td><td>-</td><td>10</td><td>95%CL</td><td>8</td><td>95%CL</td><td>9 (C)</td><td>3/2 95%CL</td><td>14 B</td><td>95%CL</td><td>18/0-4</td><td>95%CL</td><td>95%CL</td><td>95%0</td><td></td><td>0</td></t<>	STS REQUIRED	-	10	95%CL	8	95%CL	9 (C)	3/2 95%CL	14 B	95%CL	18/0-4	95%CL	95%CL	95%0		0
Mail Basel 1/3 R3-1 0·4 Tool HTOL 1.3 K3-0 1/3 R9-6 1/3 R9-6 1/3 R3-0 R3-0 <thr3-0< th=""> R3-0 R3-0 <t< td=""><td>IC WEIGHT E</td><td>3 m</td><td>152.6</td><td>3.8</td><td>0.141</td><td>5.5</td><td>34.0</td><td>4.0</td><td>122.8</td><td>2.9</td><td>115.51</td><td>1.3</td><td></td><td></td><td></td><td>1</td></t<></thr3-0<>	IC WEIGHT E	3 m	152.6	3.8	0.141	5.5	34.0	4.0	122.8	2.9	115.51	1.3				1
mail 53-4 0.5 H31 0.5 83-1 0.5 H31 0.5 33-5 0.4 1<	3. S.M. P	11 11	202.0	1:3	192.6	1.8	182.1	0.4	1.071	1-3	163.0	فح				
mail 525 0.5 494 0.1 411 0.6 44-1 0.5 524 0.4 1 min min/2 217.5 0.4 217.0 0.2 345. 0.5 357.8 0.6 375.5 0.5 357.6 0.6 387.5 0.6 525.6 0.6 375.6 0.6 375.7 0.6 375.5 0.6 375.7 274.5 774.5 774.5 774.5 774.5 774.5 774.5 774.5 776.5 774.5 776	E E	/ ME	53.4	0.5	1.84	4.0	43.1	0.5	38.6	4.0	35.5	4.0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	1 11	525	0.5	8.04	1.0	+7.1	9.0	L-44	0.5	42.9	0.4	-			
multi 38:8 or.5 35:5	EM E	/I ME	27.5	4.0	27.0	0	1.1.2	2.0	26.6	0.5	2.12	0.3				
сн свисти вы/ (3.75 0.01 3.62 0.01 3.76 0.01 3.74 0.01 3.74 0.01 3.75 0.01 3.74 0.01 3.75 0.01 3.74 0.01 3.75 0.01 3.74 0.01 3.75 0.01 3.75 0.01 3.74 0.01 3.74 0.01 3.74 0.01 3.74 0.01 3.74 0.01 3.74 0.01 3.74 0.01 3.74 0.01 3.74 0.01	1	Nul/	3.85	0.5	365	0.5	35.8	0.5	33.5	0.5	32.6	0.5				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CH LENGTH E	UN MB	3.25	10.0	3.43	10.0	3.62	10.0	3.80	10.0	4.00	100		_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 Internet	AW V	3.24	10.0	3.38	0.01	3.56	10.0	3.75	10.0	3.94	10.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T STRENGTH	N ma	953.4	202	2.400	23.6	820.4	28.0	814-5	29.5	815.1	28.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Kn/m2	AWV/	8-968	32.2	\$55.7	25.6	821.6	26.8	791.4	37.3	746.7	24-6				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ENSION	N/NINB	21.2	1.5	20.1	2.0	201	1:3	27.22	2.4	20.2	12		_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	uu	AUL	21:5	9.0	27.5	10	225	6.0	22.22	0.9	22.1	1.0	-			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ALITY ANGLES	Bu I/	-0.3	0.4	1.0-	9.0	5.0-	9.0	1.0-	1.0	1.1	0.8				_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		AW W		0.7	5.0-	4.0	6.0-	4.0	2.0	0.4	1.0-	9.0				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	x	Bu /	82.2	1.4	8.18	6.0	82.8	1.0	834	1.5	840	2.2				_
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	KNESS	/ me	682.9	13.4	9.059	1.4	654.7	5.5	634.5	8.3	620.9	1.7				_
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		AW IV	1498	24.0	9-809	26.6	915.6	22.5	4.816	23.2	908.9	14.7				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	COUNT	N IN	1.87	3.8	26.5	1.0	28.7	Ŀ.	28:3	0.5	28.7	9.0				_
S. 9 BUL (51:2) 13.7 655.8 21:3 648.4 18.1 647.3 19.0 661.3 13.4 IT BUL (52.6) 19.2 649.7 20.1 632.6 16.5 646.6 14.6 533.5 18.1 IT BUL (7.7) 0.3 7.7 0.4 7.6 0.2 7.5 0.3 7.8 0.3 IT BUL (7.7) 0.3 8.1 0.2 7.5 0.3 7.5 0.2 ANU (8.1) 0.3 8.1 0.2 8.2 0.3 7.5 0.2 COMMENTS: FABRIC DETAILLS: BULM. Jo Max 4NOY Set for TEBE		AW [/	28.32	5.0	4.80	?	28.6	3.1	1.82	0.1	28.5	0 %		-	_	-
RUL 652.6 19.2 6497 20.1 653.6 16.5 646.6 14.6 653.3 18.1 1 1.7 0.3 7.7 0.4 7.6 0.2 7.5 0.3 7.8 0.3 AN 8:1 0.3 8:1 0.2 8:2 0.3 7.5 0.2 7.5 0.3 FABRIC DETAILS: BUN, IC MA YNOGRAT FOR TEISE COMMENTS:	S. 9	A MB	651.2	13.7	655'8	21.3	4.849	1.8	647.3	0.61	661.3	13.4		-	_	
IT BUL 7:7 0:3 7:7 0:4 7:6 0:2 7:5 0:3 7:8 0:3 AUV 8:1 0:3 8:1 0:2 8:2 0:3 7:8 0:2 1:8 4 Ma 4 May ect for TEBE FABRIC DETAILS: SULP. If NA 4 Mayect for TEBE 18 G SINGLE JEASEY INOFOLD YAINGS		Aul/	652-6	2.61	6497	20.1	632.6	16.5	646.6	14.6	633.3	18.1		_	_	-
ANVI 8:1 0:3 8:1 0:2 8:2 0:3 7:8 0:2 1:4 400 40 10 10 10 10 10 10 10 10 10 10 10 10 10	Т	Bul I/	1.1	5.0	7.7	4.0	7.6	0.2	7.5	5.0	7.8	0.3		_	_	_
COMMENTS: FABRIC DETAILS: SUM. to K2 troyect for TEBE 16 G SINGLE JEASEY TWOFOLD YAIRAS		AND	30	0.3	3.1	0.3	1.8	2.0	8.2	0.3	2.5	2.0		_		_
16 G SINGLE JENSEY TNOFOLD YAIRNS ALL PIECES NOG	COMMENTS:	-							FABF	RIC DETA	VILS: 8	up. to	Kart BY	ect for	TEBE	
ALL PIECES Nol									180	SING	4.6 J.B	rser	TNOFO	LD YAR	NS.	
						•			ALLI	PIECES	Nok					

		10 mil	1204	icher a	121.1	10/2-0-	121.7	iels.	1000	10/2-10	1200	
		H C	10010	10/4 40	- the	4 4	Norder 1	2	00000	22	176/	
			JUNCE		JURCE		20/01		חחערב	1	2701	
ASH +	LENGTH											
UMBLE DRY	WIDTH											
WASH + & RINSES	LENGTH	(pott-0	9.0	5.1	4.0	8.5	0.3	145	1.0	17.4	0.3	
+ ТИМВLЕ ОКУ 🖌	WIDTH	7.92	5.0	25.6	L.0	いた	5.0	19.1	0.4	17.0	9.0	
+ HSR	LENGTH											
LINE DRY	WIDTH											
1 UASH + 4 RINSES	LENGTH											
+ LINE DRY	WIDTH											
SIZE	SOCM V	NO. R	EPS TUP	18LE 50	2	NO. R	EPS LIN	50				
TESTED	25CM			25	10			25				

% SHRINKAGE

Table 7a

IN LERNALIUN	AL INST	ITUTE F	OR COT	TON.	KNITT	ING REF.		LAB.	REF. 9	8 > SI	IBMITTED BY	72	DP.E. 13 2 44	\$ 83	
		18/1.24	YSE C	15/1-2	2/344	18/1-20	1363	18/1-20	350	15/1-30	1399		2	1	
TESTS REQUIRED	_	Ð	95%CL	Ø	95%CL	6	95%CL	(j)	95%CL	C	95%CL	95%CL	95%CL	6	5, CL
FABRIC WEIGHT	N MB	156.2	4.3	T.P41	4.3	142.6	3.3	138.8	2.8	131.5	3.8				
G.S.M.	AU IV	211-6	80	202.2	1.1	1.461	i.v	185.2	2.7	6.9/1	1:2				
2/3 CM	D INB	54.6	4.0	49.3	5.0	1.44	0.5	41.4	4.0	37.1	05		-		
	AU N	54.9	0.5	51.9	1.0	47.9	2.0	46.4	0.4	43.9	0.4				
1/3 CM	BW	4.12	4.0	264	0.5	27:3	5.0	27.5	0.5	27.1	0.5				
	Au (/	1.85	2.0	36.6	4.0	35.9	0.5	34.3	4.0	1.85	5.0				
STITCH LENGTH	Bu	13.29	0.0	3.45	100	3.62	10.0	3.80	10.0	3.99	0.01	_			
Lu Lu	AU N	3.23	0.01	3.38	10.0	3.55	100	3.74	10.0	3.93	10.0				
3C RST STRENGTH	BW 1	726:2	32.2	666.7	29.9	C35.7	23.5	619.5	21.4	8.118	12:21				
Kn/m2	Auli	710.2	34-0	681.0	29.1	8.899	27.0	618.3	23.6	574.5	18.8		_		
DISTENSION	/ INB	19.61	1.8	20.8	L:	21.0	2.6	L.12	1.1	20.1	2.2		_		
шш	AUL	22.2	9	2.2%	8.0	22.6.	1:2	22.9	6.0	22.5	6.0				-
SPIRALITY ANGLE	S BW	2.2	4.0	4.1	0.5	47	9.0	5.3	9.0	6.1	0.1		_	_	
	AUL	9.5	0.5	11.8	4.0	13.3	5.0	14.9	4.0	1.81	5.0				1
иотн	BW //	82.5	1.2	82.6	1.4	83.7	1.4	1.02	1.1	828	1.4				
THICKNESS	BU	732.4	8.11	707:3	0.8	6945	7.4	712.4	9.1	690.0	9.11			_	
	AU	9.27.6	1.36	9.87%	1-1	0.187.6	13.2	999.9	14.5	1038-1	72.7				
YARN COUNT	BU	29.3	0	29.0	2.2	29.5	2.2	29.5	0.9	29.2	06.				
TEX	AU	26.9	2.3	26.9	4.1	28.52	1.7	29.0	5.0	28.82	1.2	_			
3.E.S. 9	BW	1.022	19 6	3.022	22.6	372.1	22.4	364-0	15.8	346.7	11.8	_	_		
	AW	3553	13.4	354.6	5.41	336.6	20.02	345.5	14.9	34.7	16.9	_	_		
É EXT	N MB	7.0	60	7.3	2.0	7.0	0.3	7.7	2:0	7.0	0.2	_			
	AN U	7.9	5.0	7.8	L:0	7.6	0.3	-20	2.0	ż	0.4	_	_		
COMMENTS:			_					FAB	AIC DET!	STILS:	lever to	121	muschla	Nr TPEIS	t <u>r</u>
								180	· SiNG	5 24	FISUS	ins.	GLES VAIDA		,
								ALL	PUZCE	s No	~	l			

		15/1-2	0/327	18/1-20	344	12/1-20	1362	18/1-31	0/380	18/1-20	0/3991	
		9	95%CL	0	95%CL	20	95%CL	.0	95%CL	2	95%CL	
1ASH +	LENGTH											
rumale DRY	WIDTH											
L WASH + 4 RINSES	LENGTH	1.4	4.0	5.8	1.0	9.6	2.0	1.3	1.0	1.91	0.9	
+ TUMBLE DRY V	WIDTH	1.12	0.3	2.4.2	0.5	21.7	0.6	17.6	2.0	165	9.0	
LASH +	LENGTH											
LINE DRY	WIDTH											
1 WASH + 4 RINSES	LENGTH											
+ LINE DRY	WIDTH											
SIZE	SOCM V	NO. R	REPS TUM	BLE 50	S	ND. R	EPS LINE	50				
TESTED	25CM			25				25				
									1			

% SHRINKAGE

Table 8a

Figure 6

Appendix A

This appendix compares the fully relaxed dimensions against the ones obtained in the original K2 project

Comparisons between the original K2 measurements and the K2 supplement

Yarn as knitted

(A)	<u>K2</u>	K2 Supp.	Difference
	Av Tex	TRD Meas. Tex	
1/20's cc	29.7	29.0	0.7 Tex
2/40's cc	29.1	28.55	0.55 Tex
Percentage	differences	1/20's cc = 2.36% 2/40's cc = 1.89%	

(B) <u>K2</u>	K2 Supp.	Difference
TRD Meas.	TEX TRD Meas.Tex	
1/20's cc 29.2	29.0	0.2 Tex
2/40's cc 28.9	28.55	0.35 Tex
Percentage differences	1/20's cc = 0.68% 2/40's cc = 1.21%	

A = Comparison between the K2 average tex and K2 supplement as measured tex.

B = Comparison between the K2 TRD measured tex and K2 supplement as measured at TRD.

STITCH LENGTH

Change in stitch length due to TRD relaxation procedures (Greige)

		Nominal	Stitch Length			
	.327	.344	.362	.380	. 399	
K2	0.071	0.072	0.071	_0 019	-0.121	(mm)
1/20's cc	-0.031	-0.072	-0.071	-0.019	0.121	()
Mean change	due to washing	(5 cycles) =	0.063mm			
K2 Supp.						
1/20's cc	-0.06	-0.07	-0.07	-0.06	-0.06	(mm)
Mean change	due to washing	(5 cycles) =	-0.064mm			
K2						
2/40's cc	+0.02 4	-0.024	-0.072	-0.017	-0.098	(mm)
Mean <u></u> −0.	.037mm					
K2 Supp.						
2/40's cc	-0.04	-0.05	-0.06	-0.05	-0.06	

Mean = -0.052mm

WEIGHT AW

Difference in fully relaxed weight (greige) between K2 and K2 Supp. (Singles yarn) 18 gauge.

	Wt C+W A	K2 Supp. Meas.Wt.AW	Difference	% Difference
1-20/327	214g/m²	211.6	-2.4	-1.12%
1-20/344	206.2	202.2	-4.0	-1.94%
1-20/362	196.5	194.1	-2.4	-1.22%
1-20/380	187.2	185.2	-2.0	-1.07%
1-20/399	188.7	176.9	-11.8	-6.25%

Average percentage difference from K2 = -2.32%

Difference_in_fully_relaxed_weight_(greige)_between_K2_and_K2_Supp. (Twofold Yarn) 18_Gauge

	<u>K2</u>	K2 Supp.	Difference	% Difference
	Wt C+W A	Meas.Wt.AW		
2-40/327	207.5g/m ²	202.0	-5.5	-2.65%
2-40/344	195.3	192.6	-2.7	-1.38%
2-40/362	179.2	182.1	+2.9	+1.62%
2-40/380	172.2	170.1	-2.1	-1.22%
2-40/399	167.3	163.0	-4.3	-2.57%

Average percentage difference from K2 = 1.24%

SEE FIGURES 7 and 8

COURSES AW

Difference in fully relaxed courses (greige) between K2 and K2 Supp. (Singles Yarn) 18 Gauge.

	K2	K2Supp.	Difference	% Difference
	C/3cmA	C/3cm AW		
1-20/327	55.9	54.9	-1	-1.79%
1-20/344	52.2	51.9	-0.3	-0.57%
1-20/362	48.5	47.9	-0.6	-1.24%
1-20/380	46.5	46.4	-0.1	-0.20%
1-20/399	43.6	43.9	+0.3	+0.69%

Average percentage difference from K2 = -0.62%

Difference in fully relaxed courses (greige) between K2 and K2_supp. (Twofold Yarn) 18_Gauge

		K2Supp.	Difference	% Difference
2-40/327	53.8	52.5	-1.3	-2.42%
2-40/344	51.2	49.8	-1.4	-2.73%
2-40/362	46.9	47.1	+0.2	+0.43%
2-40/380	44.3	44.7	+0.4	+0.90%
2-40/399	42.7	42.9	+0.2	+0.47%

Average percentage difference from K2 _= -0.67%

SEE FIGURES 9 AND 10

24

WALES AW

Difference_in_fully_relaxed_wales (greige)_between_K2 and K2_Supp. (Singles Yarn) 18_gauge

	K2 W/3cmA	K2 Supp. W/3cm AW	Difference	% Difference
1-20/327	38.2	38.1	-0.1	-0.26%
1-20/344	36.6	36.6	0	0
1-20/362	35.3	35.9	+0.6	+1.7%
1-20/380	34.1	34.3	+0.2	+0.58%
1-20/399	33.9	33.1	-0.8	-2.36%

Average percentage_difference from K2 = -0.07%

Difference in fully relaxed wales (greige) between K2 and K2 Supp. (Twofold Yarn) 18 gauge

	K2 W/3cmA	K2 Supp. W/3cm AW	Difference	% Difference
2-40/327	38.8	38.8	0	0
2-40/344	37.0	36.5	-0.5	-1.35%
2-40/362	35.0	35.8	+0.8	+2.28%
2-40/380	33.9	33.5	-0.4	-1.18%
2-40/399	32.5	32.6	+0.1	+0.31%

Average percentage difference from K2 = + 0.012%

SEE FIGURES 11 AND 12

Figure 7

FABRIC PROPERTIES 18G SJ GREY, K2 & K2 SUP

Figure 11

FABRIC PROPERTIES 18G SJ GREY, K2 & K2 SUP

Appendix B

This appendix compares the fully relaxed dimensions of the greige state fabrics from the K2 supplement work against the fully relaxed dimensions predicted from the STARFISH model (August 1983).

The input for the model was the measured yarn from the package and the lab-measured stitch lengths from the greige before-wash fabrics.

Note:

No comparison is made of the yarn change due to the relaxation procedure, as the measurements used in these predictions were from the yarn package and after relaxation from the fabric, hence the two methods of measuring are different.

At this stage, we have not ascertained if there are differences in these two methods of measuring yarn count.

STITCH LENGTH

Change in the stitch lengths due to the TRD relaxation procedure (Greige)

		NOMINAL	STITCH LENGTH			
	.327	.344	.362	.380	.399	
K2 Supp. 1/20's cc	-0.06	-0.07	-0.07	-0.06	-0.06	(mm)
Mean change_due	e to washing (5	_cycles)_ =	-0.064mm			
Predicted 1/20's cc	-0.04	-0.05	-0.06	-0.07	-0.07	(mm)
Mean predicted	change = -0.	05 <u>8mm</u>				
	-					
K2 Supp. 2/40's cc	-0.04	-0.05	-0.06	-0.05	-0.06	(mm)
Mean change due	to washing (5	_cycles)_ = _0	.052mm			
Predicted 2/40's cc	-0.03	-0.03	-0.04	-0.05	-0.05	
Mean predicted	change = 0.0	40 <u>m</u> m				

WEIGHT AW

Difference in fully relaxed weight (greige) between K2_Supp. measured and STARFISH_predicted

Nom. SL	K2 Supp. Meas.Wt AW	Predicted Wt AW	% Difference
1-20/327	211.6 g/m ²	208.0	+ 1.73%
1-20/344	202.2	199.2	+ 1.50%
1-20/362	194.1	190.7	+ 1.78%
1-20/380	185.2	182.6	+ 1.42%
1-20/399	176.9	174.7	+ 1.26%

Average percentage difference from predicted = + 1.54%

2-40/327	202.0	196.4	+ 2.85%
2-40/344	192.6	187.8	+ 2.56%
2-40/362	182.1	177.8	+ 2.42%
2-40/380	170.1	169.3	+ 0.47%
2-40/399	163.0	160.7	+ 1.43%

Average percentage difference from predicted = + 1.95%

SEE FIGURES 15 & 18

30

COURSES

Difference in the fully relaxed courses (greige) between the K2 Supp. measured and the STARFISH_predictions.

Nom SL	K2 Supp.	Predicted	% Difference
1-20/327	54.9	55.0	- 0.18%
1-20/344	51 0	52.2	- 0.57%
1-20/362	47 0	49.5	- 3.23%
1-20/302	47.5	49.5	- 1.06%
1-20/300	40.4	40.9	- 1.00%
T-20/ 399	43.9	44.5	- 1.33%

Average percentage difference from predicted = - 1.28%

2-40/327	5	52.5	52.7	- 0.38%
2-40/344	4	9.8	50.1	- 0.60%
2-40/362	4	7.1	47.0	+ 0.21%
2-40/380	4	4.7	44.4	+ 0.67%
2-40/399	4	2.9	41.8	+ 2.63%

Average percentage difference from predicted = +0.51%

SEE FIGURES 16 & 19

WALES

Difference in the fully relaxed wales (greige) between the K2 Supp. measured and the STARFISH predictions.

Nom. SL	K2 Supp. Meas. W/3cm AW	Predicted W/3cm AW	% Differene
1-20/327	38.1	38.8	- 1.80%
1-20/344	36.6	37.5	- 2.40%
1-20/362	35.9	36.3	- 1.10%
1-20/380	34.3	35.1	- 2.28%
1-20/399	33.1	34.0	- 2.65%

Average percentage_difference from_predicted = __2.05%_

2-40/327	38.8	38.5	+ 0.78%
2-40/344	36.5	37.0	- 1.35%
2-40/362	35.8	35.4	+ 1.13%
2-40/380	33.5	34.0	- 1.47%
2-40/399	32.6	32.5	+ 0.30%

Average percentage difference from predicted = - 0.12%

SEE FIGURES 17 & 20

32

Figure 13

	10:22 9e 1	width cm(T)	66638 6663 6663 6663 6663 6663 6665 7665 7665
****	15-SEP-83	weight g/sm) x 8	196.4 187.8 177.8 169.3 169.3
DICTIONS	8	ivered wales 3cm hkage = 8	2010 2010 2010 2010 2010 2010 2010
MODEL PRE		As del courses 3cm	502444 5027444 7.92744 7.9244 7.9248
* IIC -STARFISH-	in. 1500 needles	Fin. relaxed Yarn Stlen TF Tex cm	28.0 0.325 16.3 28.0 0.340 15.6 28.0 0.358 14.8 28.0 0.375 14.1 28.0 0.375 14.1 28.0 0.375 14.1
****	SJtwo: 18g 26 Grey	As knitted Yarn Stlen TF Tex cm	28.6 8.328 16.3 28.6 8.343 15.6 28.6 8.362 14.8 28.6 8.388 14.1 28.6 8.488 14.1 28.6 8.488 14.1

Figure 14

	119	£Ê	ଷଷଷଷ
	16: 9e	2 C 3	800000 800000
***	SEP-83	eight g∕sm 0	800 900 10 10 10 10 10 10 10 10 10 10 10 10 1
**	5	3 X	N
ICTIONS	U	vered uales Jam kage =	337.88 346.33 346.33 34.13 34.69 34.
DEL PRED		As deli ourses 3cm .xW Shrin	000044 00004 000000
QW		പ	
-STARFISH-	1500 needles	n. relaxed StLen TF cm	0.325 16.3 0.326 15.6 0.356 14.9 0.373 14.2 0.392 13.5
IIC	÷	ELL.	000000
****	89 26 11	TF Y	400000 400000
	SJsin: 1 Grey	As knitt rn Stlen x cm	6 6 329 6 6 345 6 6 345 6 6 362 362 362 368 368 368 368 399
		90.	000000 000000

18G S.J. SINGLES, K2, SUP GREY FAB.

18G S.J. TWOFOLD, K2,SUP GREY FAB.

18G S.J. TWOFOLD, K2, SUP GREY FAB.

Observations

- 1. The yarn for this project tested out within acceptable tolerances and is in quite good agreement against the yarns used in the original K2 work. The stitch lengths were maintained within tolerances. Therefore, the performance of these fabrics should be very similar to the original K2 project fabrics.
- 2. Analysis of the fault rates during knitting showed that the singles yarn indicated a higher fault rate for the tighter fabrics. This was not evident in the original K2 work.
- 3. After 5 wash and tumble cycles the fully relaxed behaviour pattern was similar to the original K2 work and showed once again dimensional differences between fabrics produced from singles yarn and fabrics produced from twofold yarns.
- 4. A comparison of the changes that take place on greige fabrics as a result of our relaxation procedure (i.e. 5 wash and tumble cycles) between this fabric set (K2 supp.) and the original set (K2) show the following:
 - a) the change in stitch length due to the washing procedure was quite close between the K2 and K2 Supp. sets.
 - b) the fully relaxed weight of the greige fabrics from the singles yarn were lighter in every stitch length than the original K2 weights (approximately 2.3% mean)
 - c) the twofold yarn displayed a similar trend although not to the same degree (1.2% mean)
 - d) a good agreement of fully relaxed courses and wales was recorded between the K2 and K2 supp. sets.
- 5. A comparison was made of the fully relaxed greige dimensions of the K2 supp. set against the dimensions predicted by the STARFISH model. This shows the following:
 - a) the stitch length changes due to the TRD washing procedure show a good measure of agreement between the K2 supp. measured and the STARFISH predictions,
 - b) the fully relaxed weights of the K2 supp. samples were heavier than predicted with a mean difference of 1.7%,
 - c) courses measured in the K2 supp. set against courses predicted produced a high degree of agreement with differences of approximately 1.3% on the singles and 0.5% on the twofold,
 - d) wales compared showed differences of approximately 2% on the singles and 0.12% on the twofold.
 - e) the overall agreement between the measured dimensions and the predicted dimensions could be considered to be quite good.