

International Institute For Cotton Technical Research Division Manchester

Research Record No. 151

Project K1/K2 - Single Jersey Fabrics Effect Of Dyeing & Piece Mercerising On Dimensional Properties, Colour Yield And Economics

Ian Day

November 1981

Classification:Fabrics/Knitted/PropertiesKey Words:Single Jersey, Dyeing, Mercerising, Colour, Economics.

Digital Version: March 2012

Contents

- 1. Introduction
- 2. Influence Of The Dyeing Machine
 - 2.1. Residual Shrinkage
 - 2.2. Weight AW
 - 2.3. Courses and Wales AW
 - 2.4. Width AW
 - 2.5. Burst Strength AW
- 3. Effect Of Dyeing Process On Colour Yield
- 4. Variations In Colour Yield Of Kl Fabrics
- 5. Tubular vs. Open Width Mercerising
 - 5.1. Colour Yield
 - 5.2. Variation in colour yield across width
- 6. Correlation Of Laboratory And Bulk Dyed Knitgoods For Colour Yield
- 7. Dye Savings Resulting From Piece Mercerisation
- 8. Economic Advantages Of Knitgoods Mercerisation

 TABLES 1 - 21

 FIGURES 1 - 33

AW = After Wash, i.e. after IIC Reference Relaxation Procedure

1. Introduction

The objectives of the Kl/K2 projects have already been fully explained in previous reports. This report analyses the following areas.

- The influence, if any, of different types of dyeing machine upon dimensional properties of a range of single jersey fabrics. (Kl/K2 fabrics).
- The influence, if any, of different types of dyeing machine on the colour yield of a range of single jersey fabrics when dyed in the same concentration of dye liquor. (Kl/K2 fabrics).
- The colour yield of identical sets of fabric qualities dyed in different jet dyeing machines in the tubular state and subsequently tubular or open-width finished. (Kl fabrics).
- Comparison of a tubular and open-width mercerised set of single jersey fabrics for
 - 1. Colour yield
 - 2. Variation in colour yield across the fabric width (K2 fabrics)
- Quantification of the possible dye savings resulting from piece mercerisation for Procion Blue H-EG.
- Correlation of colour yield from laboratory dyeings reported in *Research Record 141*, and bulk dyeing from Kl/K2.
- Quantification of the economic advantages of piece mercerisation using data obtained during the IIC/TPI exercise and the IIC computer economic model.

2. Influence Of The Dyeing Machine On Dimensional Properties

Details of fabric production for the Kl/K2 trials have been given in Research Record No. 114.

To investigate the above objective a limited number of fabric qualities had to be selected. The central yarn counts in both 24 and 28 gauge qualities were chosen for the basis of the K2 project. With singles and equivalent two-fold yarns, each at five stitch lengths, giving a total of twenty construction variants. This was considered to be a minimum number to carry out a useful exercise.

Earlier work (Project CP78) on interlock and rib fabrics suggested that yarn count/stitch length interaction may be influenced by the dyeing process used, particularly if winch and jet machines are compared. There could also be an effect on structure between types of jet machine now in use.

To examine if the dyeing process has an influence on the fully relaxed structure of single jersey fabrics, four dyeing machines available at Meridian were utilised, namely:

Thies R-Jet 95	R95
Scholl Subtilo	SS
Thies RotoStream	RS
Winch	WD

The operations of dyeing and finishing in the tubular form have been fully reported in *Research Record No. 122*. In order to detect the influence of each individual dyeing machine the subsequent finishing route had to be standardised and is briefly described below.

Dyeing Process:	(R-95, SS, RS, or WD)
Calator Airtex:	(De-twist, Hydroextract, Plait)
Pegg Dry	
Heliot calender to width	

Following processing the fabrics were sampled and submitted to the IIC testing department where structural measurements were taken before and after the IIC relaxation procedure.

A comparison has also been made between the four dyeing machines mentioned, where a standard finishing route has been employed, and the remaining unmercerised K2 dye lots where the finishing routes differ. Also included are the identical fabrics from the Kl open-width exercise.

Brazzoli	Tosi, Italy
RotoStream	Engel, Germany
RotoStream OW	Strines, England

2.1. Effect of Dyeing Process on Residual Length and Width Shrinkage (*Tables 1 - 2*)

During the K2 processing at Meridian, no problems were encountered in reaching target widths at each finishing stage. Studying *Tables 1 and 2* it would appear that the winch dyed route gives a slightly more stable fabric compared to the jet machines but not significantly so. The Brazzoli overflow route finished at Tosi also produced similar results compared to the jet machines.

What is clear is that it is much more difficult to stabilise single jersey fabrics by an openwidth route even though target widths are attained on the stenter frame and overfeed is used.

2.2. Effect of Dyeing Process on Weight AW (*Table 3*)

No significant difference can be observed between the dye lots finished by an identical tubular finishing route nor by alternative tubular or open-width finishing routes.

2.3. Effect of Dyeing Process on Courses and Wales AW (Tables 4-5)

Again, from the dyeing machines or finishing methods examined, no significant difference can be observed.

2.4. Effect of Dyeing Process on Fabric Width AW (*Table 6*)

No influence on fully relaxed width by a particular dyeing machine or finishing route.

2.5. Effect of Dyeing Process on Burst Strength AW (*Table 7*)

The lots dyed in the RotoStream machines at three venues have the lowest mean burst strengths, but these are not significantly lower than the remaining lots. Therefore, no major difference can be observed between jet and winch machines on the influence of the mechanical action of each machine on burst strength.

3. Effect Of Dyeing Process On Colour Yield

To examine the effect of the dyeing process on colour yield, data from six dye lots containing identical fabrics were available. These were the four lots from Meridian plus the two control lots from the mercerising trials at Engel and Tosi.

Thies R-Jet 95	Meridian
Scholl Subtilo	Meridian
Thies RotoStream	Meridian
Winch	Meridian
Brazzoli Overflow	Tosi
Thies RotoStream	Engel

Each dyelot was dyed in a standard concentration of dye liquor, i.e. 2% o.w.f. Procion Blue H-EG with the exception of the Meridian RotoStream batch. This inadvertently received a top-up of dye amounting to a total of 2.3% o.w.f. dyestuff.

Colour reflectance measurements on each fabric quality from each dye lot were made on an ICS Colour Difference Meter; the red, green, blue readings being recorded. The green values for each dyeing machine are listed in *Table 8* and the mean CIELAB lightness value "L" is calculated from the mean "G" values.

The graph in *Figure 1* is taken from experimental results in *Research Record No. 141* and has been used to compare the dye utilised in each dyeing machine, which ranges from 1.58% to 2.05% o.w.f. approximately. Had the Meridian RotoStream batch not received a top-up this would certainly have been weaker in shade than the winch lot. Since the Engel RotoStream lot gave the deepest shade, one cannot therefore state that RotoStream dyeing machines give consistently weaker shades compared to other machines.

What is surprising is that there is a 20% difference in dye utilised between the weakest and the deepest shades.

From this limited exercise, it cannot be confirmed whether this range in colour yield is normal batch-to-batch variability. In the next section, a reasonable estimation of the batch-to-batch reproducibility of the Thies R-Jet 95 is made.

Conclusion: From the six dyeing machines examined, a 20% variation in colour yield was observed.

4. The Variation In Colour Yield Of The Kl Fabrics

Research Records Nos. 122 and 132 describe the operations of dyeing and finishing in tubular and open-width form for the K1 fabrics. Briefly: for the tubular finished fabrics, a total of 94 fabric qualities were split into five dye batches and dyed to the same shade in the Thies R-Jet 95 at Meridian. For the open-width, a total of 124 qualities including 30 for a spirality trial were split into six dye batches and dyed under identical conditions in a Thies RotoStream jet dyeing machine at Strines. Unfortunately, as reported in *Research Record 132*, the batch-to-batch shade reproducibility of the RotoStream dyed fabrics was extremely poor. All but the final batch were considerably weaker in shade than the corresponding R-Jet 95 dyed set. After investigations, no satisfactory explanation for this could be found and so it

is unfortunate that a true comparison of the two dyeing machines for colour yield and reproducibility cannot be made.

However, *Tables 9 - 15* list the reflectance values for both the R-Jet 95 and RotoStream dyed fabrics. It can be seen from *Table 14* that the confidence limits and % Accuracy figures indicate that the shade reproducibility of the R-Jet 95 dyed set is extremely good. If we assume that batch 6 of the RotoStream dyed fabrics is a typical result for this machine using this dyestuff, and if the mean "L" values for both machines are plotted in *Figure 2*, there is a 19% difference in shade between the two machines.

Conclusion: The Thies R-Jet 95 gives good colour yield and batch-to-batch reproducibility.

5. Comparison Of The Tubular And Open-Width Mercerised K2 Fabrics For Colour Yield And Variations In Colour Yield Across Fabric Width

Research Records Nos. 133 and 139 cover the processing details of the tubular and openwidth mercerised K2 fabrics together with the corresponding controls.

5.1. Colour Yield

It had been previously estimated that the savings in dyestuff as a result of pre-mercerisation for a 2% shade would be in the order of 25%. In order to achieve a similar depth of shade to the corresponding controls and the rest of the Kl/K2 fabrics, both the tubular mercerised fabrics at Tosi, and the open-width mercerised fabrics at Engel were dyed to a 1.5% shade as opposed to the standard 2% concentration.

The tubular mercerised and control fabrics were dyed in a Brazzoli Overflow dyeing machine at Tosi, and the open-width mercerised and controls on a Thies RotoStream at Engel. *Table 16* lists the colour reflectance measurements for the mercerised fabrics. It can be seen that the mean "L" values for the two sets are identical and this would indicate that there is no difference in the degree of mercerisation for the two systems.

Conclusion: The colour yields of two sets of mercerised K2 fabrics are comparable, thus the Kleinewefers open-width *Centrifuga* merceriser and the Omez *Mercelux* tubular merceriser gave similar degrees of mercerisation.

5.2. Variation in Colour Yield Across Fabric Width

There has been some recent concern about the visual variation in colour depth from edge to middle on some open-width mercerised and dyed fabrics. This has been attributed to the permanent variation in wale spacing across the width of the fabric, caused by uneven tensions as the fabric passes through the merceriser. Visual examination of Lot 10 fabrics mercerised on a Kleinewefers merceriser proves that this set also displays the fault.

To establish, for this set of fabrics, if this variation is purely an optical effect due to wale density, or whether there are differences in the degree of mercerisation, and subsequently differences in dye uptake, colour reflectance measurements were taken across the width of tubular and open-width mercerised and control fabrics after the relaxation procedure.

Tables 17 - 20 list the measurements for all the fabrics, together with means. Studying the red, green, blue mean values in *Table 20* for the open-width mercerised set, it is clear that there is no difference in dye uptake across fabric width compared to the controls or Omez mercerised set.

Conclusion: From this exercise it appears that the visual variation in colour depth across the width of the open-width Kleinewefers mercerised fabric is an optical effect caused by varying wale density.

6. Correlation Of Laboratory And Bulk Dyed Knitgoods For Colour Yield

Research Record No. 141 describes the laboratory examination of the effect of the piece mercerisation of cotton knitgoods on the exhaustion of four reactive dyes, including Procion Blue H-EG. This work gives a good indication of the savings in dyestuff which are possible, and so it is useful to try and make some correlation between the colour yield of laboratory-dyed, mercerised and control fabrics and bulk-dyed, mercerised fabrics and their corresponding controls.

The mean "L" value for the K2 mercerised dye batches is 39.06 for 1.5% o.w.f. dye and that of all the unmercerised dye batches (Kl/K2), excluding the suspect batches dyed at Strines, is 40.19 for 2% o.w.f. dye. These values are plotted on a graph taken from experimental results in *Research Record 141*, shown in *Figure 3*.

They correspond approximately to 1.3% dye and 1.8% dye for the laboratory-dyed samples. For Procion Blue H-EG, it would appear that the laboratory-dyed samples gave an approximately 10% deeper shade than the bulk-dyed fabrics in the Kl/K2 project.

7. Dye Savings Resulting From Piece Mercerisation For Procion Blue H-EG

With regard to dye savings as a consequence of piece mercerisation, it would appear that the 25% reduction in dye concentration for the K2 mercerised lots was an under-estimation. From *Figure 3*, the average shade of the mercerised fabrics is deeper and approximately 11% less dyestuff could have been used to give a shade equivalent to that of the unmercerised fabrics. In other words a 1.34% dye concentration corresponds to a 2% dye concentration on the unmercerised fabric.

The dye saving at this depth of shade for Procion Blue H-EG on the K2 fabrics was therefore approximately 33%. This confirms the figures from the experimental work carried out on this dyestuff in *Research Record No. 141*.

Conclusions:

- 1. For Procion Blue H-EG laboratory sample dyeings gave 10% deeper shades compared to bulk dyeing for equivalent concentrations of dyestuff on both mercerised and unmercerised knitgoods. This can be taken into consideration during future experimental work.
- 2. For medium shades of approximately 2% Procion Blue H-EG, a 30-33% saving in dye can be made by pre-mercerisation.

8. Estimation Of The Economic Advantages Of Knitgoods Piece Mercerisation Utilising A Computer Model

Research Record No. 127 outlines the development of a computer programme to enable a realistic picture to be made of the economic consequences of installing knitgoods mercerisers. During the course of the IIC/TPI projects, information on reactive dyestuff savings resulting

from pre-mercerisation has been gathered from IIC experimental work and bulk trials plus data received from dyestuff companies. Therefore, a further exercise can be made utilising the computer model and incorporating these data.

Studying the data available it is clear that, when reactive dyestuffs are used there is always a saving as a result of mercerisation regardless of depth of shade. This percentage saving varies from dyestuff to dyestuff and so in order to analyse the overall benefits for a realistic mill situation, a mean value had to be used. We know from pale to deep shades, savings of 25% - 75% are possible. The computer model has provision for accepting the mean savings at three shade levels, namely, pale, medium, and deep shades. So, for all the data received to date, the following mean dyestuff savings have been calculated.

Pale shades, 0.5 - 1.5% o.w.f.	25% s	aving
Medium shades, 1.5 - 4.0%	40%	"
Deep shades, 4.0 - 8.0%	60%	"

To carry out a realistic estimation of the economic consequences of mercerisation, certain assumptions have been made.

A mill, whatever its size, considering the installation of a merceriser, must have enough production available to fully utilise the machine and labour force for at least one shift. A lower-priced tubular merceriser, capable of less hourly production than the larger machines, would be more attractive to a mill mercerising a relatively small annual production of knitgoods.

In this report, a comparison is made between two tubular mercerisers, both being utilised fully for one shift each day. The object of the exercise is to show how a merceriser running under certain circumstances influences the total processing cost per kilogram of fabric, and also the annual overall production costs for the mill. *Figures 4 - 33* are printouts from the economic model which are explained below.

- 1. Figures 4 8 Small mill, small merceriser during depreciation
- 2. Figures 9 11 Small mill, small merceriser, no depreciation
- 3. Figures 12 15 Case (1) + caustic recovery
- 4. Figures 16 18 Case (2) + caustic recovery
- 5. Figures 19 23 Large mill, large merceriser during depreciation
- 6. Figures 24 26 Large mill, large merceriser, no depreciation
- 7. Figures 27 30 Case (5) + caustic recovery
- 8. Figures 31 33 Case (6) + caustic recovery

The graphs in *Figures 8, 11, 15, 18, 23, 26, 30 and 33* predict how the cost of processing mercerised fabric changes as the demand upon the merceriser stretches beyond a single shift situation. At a certain percentage production the graph indicates the break-even point of the process, i.e. where the slope crosses the horizontal line 'c'. The lowest point of each slope indicates the maximum capacity of the merceriser running at the speed inserted into the computer. Line 'm' is an arbitrary 20% mark up over the unmercerised process cost for the mercerised fabric, to give some indication of profit margin as the merceriser utilisation is increased.

Conclusions

The resultant costs for the above categories are summarised in *Table 21*. The figures listed are the actual costs incurred prior to any mark-up placed on the fabric to reflect any improvement in quality. Certain conclusions have therefore been drawn from this table.

- 1. Assuming the input figures for percentage dyestuff savings are realistic, during the depreciation period the total processing cost of the mercerised fabric is only fractionally more than the unmercerised fabric.
- 2. In some countries, legislation makes caustic recovery essential in order to minimise effluent. Whatever the circumstances it would appear that during the depreciation period, a caustic recovery plant pays for itself.
- 3. Beyond the depreciation period it is clear that mercerisation plus caustic recovery pays for itself. Depending upon the specific circumstances, this process can result in a considerable saving in the total annual production costs of the mill, quite apart from any profits gained from mark-ups for improvements in fabric quality.

SAMPLE		%Shr.L R-95	%Shr.L RS	%Shr.L SS	%Shr.L WD	%Shr.L Brazz	%Shr.L RS-E	%Shr.L RS-OW
24/1-28/291/ 24/1-28/306/ 24/1-28/306/ 24/1-28/337/ 24/1-28/337/ 24/2-56/354/ 24/2-56/306/ 24/2-56/321/ 24/2-56/354/ 28/1-36/259/ 28/1-36/259/ 28/1-36/259/ 28/1-36/273/ 28/1-36/301/ 28/2-72/259/ 28/2-72/259/ 28/2-72/273/ 28/2-72/287/ 28/2-72/301/ 28/2-72/316/	α ά β	11.7 125.5 188.6 125.3 188.6 125.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 1	12.5 14.8 15.4 17.6 17.6 11.7 14.5 15.7 14.5 15.7 14.3 16.8 19.8 16.8 19.8 12.3 11.7 14.3 16.8 19.8 12.3 11.7 14.5 13.7 14.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5	12.6 14.2 15.7 17.6 117.7 117.6 117.7 117.6 117.7 117.6 117.7 117.6 117.7 117.6 117.7 117.	11.8 14.0 9.7 12.3 11.6 14.2 9.7 12.3 11.6 14.2 14.7 11.8 13.4 14.7 17.5 14.3 11.3 14.7 17.5 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11	12.9 13.4 15.8 19.5 9.3 14.7 19.5 9.1 14.7 14.8 11.5 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8	15.6 17.3 18.1 19.9 11.2 11.8 15.0 14.2 17.6 19.4 17.6 19.4 17.6 19.4 17.6 19.4 19.9 19.4 17.6 19.4 19.9 19.4 12.7 12.7 12.7 14.7 14.3 14.1 14.2	13.9 13.9 13.821 19.1 19.2 10.9 12.0 12.1 10.9 12.5 10.9 12.5 10.9 12.5 10.9 12.5 10.9 12.5 10.9 10.7 10.9 10.7 10.9 10.7 10.9 10.7 10.9 10.7 10.9 10.7
OVERALL	×	14.5	15.2	14.5	12.9	14.6	16.1	15.3

EFFECT OF DYEING PROCESS ON LENGTH SHRINKAGE

Table 2

SINGLE JERSEY PROJECT K2.

EFFECT OF DYEING PROCESS ON WIDTH SHRINKAGE.

SAMPLE	%Shr.W	%Shr.W	%Shr.W	%Shr.₩	%Shr.W	%Shr.W	%Shr.W
	R-95	RS	SS	WD	Brazz	RS-E	RS-OW
24/1-28/291/	11.7	10.2	9.9	12.1	9.9	15.9	15.6
24/1-28/306/	10.3	9.8	9.8	10.3	11.1	19.0	12.1
24/1-28/321/	11.6	8.3	9.2	8.5	10.7	14.4	12.1
24/1-28/337/	10.6	7.4	9.0	9.3	9.9	15.7	12.7
24/1-28/334/	8.7	6.6	6.6	5.0	6.0	13.0	9.8
24/2-56/291/	10.3	10.9	11.1	11.7	13.4	14.9	15.0
24/2-56/306/	13.4	10.7	12.2	13.1	12.3	19.3	17.4
24/2-56/321/	12.0	10.1	10.7	11.2	11.6	15.4	12.9
24/2-56/337/	14.0	8.7	10.1	10.2	12.8	16.6	14.0
24/2-56/354/	12.1	10.5	11.6	11.6	13.4	17.6	18.1
28/1-36/259/ 28/1-36/273/ 28/1-36/287/ 28/1-36/301/ 28/1-36/301/ 28/1-36/316/	10.0 11.9 12.8 12.3 8.8	8.7 8.4 6.3 5.9	8.3 9.9 9.3 8.7	11.8 9.6 10.9 9.6 10.0	9.0 10.4 10.0 6.7 7.4	17.1 12.9 10.5 14.0 10.4	7.8 12.4 9.8 10.9 9.5
28/2-72/259/ 28/2-72/273/ 28/2-72/287/ 28/2-72/381/ 28/2-72/381/ 28/2-72/316/	13.3 12.6 13.9 15.5 15.7	12.2 10.8 11.3 12.1 10.4	10.9 10.9 13.2 13.5 14.2	13.1 13.3 12.4 12.9 11.8	13.3 13.2 13.7 13.3 14.3	18.1 14.6 20.0 18.5 14.7	15.4 13.8 16.9 16.7 15.4
Differ	5 12-1	9.4	10.4	10.9	W.I	15.1	13.4

SAMPLE		MnWtAW R-95	MnWtAW RS	MnWtAW SS	MnWtAW WD	MnWtAW Brazz	MnWtAW RS-E	MnWtAW RS−OW
24/1-28/291/ 24/1-28/306/ 24/1-28/321/ 24/1-28/337/ 24/1-28/354/ 24/2-56/291/ 24/2-56/306/ 24/2-56/321/ 24/2-56/337/ 24/2-56/354/	E I	160.7 150.7 147.1 142.3 129.2 156.8 146.8 146.8 135.5 129.0 119.1	158.1 152.4 144.5 143.2 133.6 146 152.8 152.1 152.1 140.8 128.6 126.6	155.2 144.8 138.3 140.0 134.5 143 152.3 145.0 134.6 134.6 128.0 128.0	158.8 147.0 138.5 138.5 132.5 143 150.7 147.9 136.1 132.2 122.3	156.4 149.4 141.7 136.1 130.2 143 151.1 145.4 137.6 137.6 119.8	157.8 152.9 145.8 139.5 135.5 146 154.2 147.0 140.5 140.5 146.3 123.8	159.5 154.5 154.5 134.5 132.0 146.9 146.9 146.5 146.5 142.5 122.3
28/1-36/259/ 28/1-36/273/ 28/1-36/287/ 28/1-36/301/ 28/1-36/316/ 28/2-72/259/ 28/2-72/273/ 28/2-72/287/ 28/2-72/301/ 28/2-72/316/	τ. X	37 133.0 129.4 122.7 118.0 115.1 124 135.0 134.8 117.7 109.6 106.5 121	140 134.0 129.8 126.7 117.4 112.6 124 133.1 126.7 120.4 110.8 109.4 120	136 131.5 125.7 19.9 117.1 117.5 122 131.9 123.4 118.9 113.2 107.8	138. 134.5 130.1 123.7 117.1 112.9 124 134.2 129.1 120.5 114.2 107.8	136 133.3 129.0 120.8 117.7 113.0 123 133.4 123.1 115.9 108.3 104.7 117.	140 137.5 131.0 124.7 118.7 111.7 125.2 128.8 123.1 116.4 111.8 123.	N38 128.6 123.9 119.4 120.3 117.7 122 138.5 124.5 123.7 111.3 106.3 121
Overale T		132	133	130	131	130	134	132

EFFECT OF DYEING PROCESS ON MEAN WEIGHT A/W

Table 4

EFFECT OF DYEING PROCESS ON COURSES A/W

SAMPLE	C∕3cmA R-95	C∕3cmA RS	C∕3cmA SS	C∕3cmA WD	C/3cmA Brazz	C∕3cmA RS-E	C/3cmA RS-OW
24/1-28/291/ 24/1-28/306/ 24/1-28/321/ 24/1-28/337/ 24/1-28/354/ 24/2-56/291/ 24/2-56/306/ 24/2-56/321/ 24/2-56/337/ 24/2-56/354/ 28/1-36/259/ 28/1-36/287/ 28/1-36/287/ 28/1-36/301/	58.5 54.8 52.6 49.1 52.6 53.3 56.3 58.3 56.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58	58.5 55.6 49.0 45.9 55.3 55.3 55.3 55.3 55.3 47.5 50.5 50.5 47.7 60.7 58.1	58.6 55.7 52.2 49.4 58.7 52.2 49.4 55.7 53.7 53.7 54.7 55.7 608.9 553.9	57.3 53.1 49.9 47.6 44.7 50.5 53.0 49.4 450.7 55.9 53.0 49.4 43.5 53.1 49.7 63.2 59.1 59.1 59.1 59.1	57.4 54.0 51.6 48.6 51.6 51.6 51.6 51.6 51.6 51.6 51.6 53.1 53.1 53.1 58.6 58.6 58.6 58.6 58.6 58.6 58.6 58.6	58.2 53.7 50.3 48.9 45.0 57.3 49.0 47.6 57.3 49.0 47.6 45.3 64.2 51.6 60.1 51.6	58.3 54.7 52.0 48.1 54.8 54.8 54.8 54.8 54.8 52.8 47.1 44.7 44.7 44.7 44.7 59.1 44.7 59.0 59.1 59.0 54.8
28/1-36/316/ 28/2-72/259/ 28/2-72/273/ 28/2-72/287/ 28/2-72/301/ 28/2-72/316/	50.6 50.2 55.2 57.9 55.6 51.7 48.4 55.5	49.2 56.8 61.9 68.0 54.0 50.2 49.6 55.1	49.7 57.6 64.1 59.1 55.1 52.1 48.6 55.1	48.5 55,8 62.6 58.7 53.7 51.8 48.5 55.1	49.9 56.3 58.5 58.5 54.9 51.9 48.4 55.2	49.0 56.2 59.7 53.9 51.1 47.6 54.9	50.9 56.2 63.5 58.0 55.2 51.8 50.1 55.7
OVERALL	ž 53.5	53.8	54.0	52.8	53.3	53.1	53.4

SAMPLE	₩⁄3cmA R-95	W∕3cmA RS	W∕3cmA SS	W∕3cmA WD	W∕3cmA Brazz	W∕3cmA RS-E	W/3cmA RS-OW
24/1-28/291/ 24/1-28/306/ 24/1-28/321/ 24/1-28/337/ 24/1-28/337/ 24/1-28/354/	43.6 40.8 40.1 38.4 37.8 40.1	42.0 41.1 38.3 37.5 37.5 39.3	42.3 40.5 38.9 39.4 37.4 39.7	43.3 41.4 38.9 38.7 37.9 40.0	43.4 41.7 40.2 39.7 38.1 40.6	42.8 42.1 40.0 38.8 37.7 40.3	43.3 41.5 40.6 38.9 38.0 40.5
24/2-56/291/ 24/2-56/306/ 24/2-56/321/ 24/2-56/337/ 24/2-56/354/	42.0 40.4 39.1 38.4 35.2 39.0	41.3 39.8 39.1 36.0 36.4 38.5	41.6 41.2 38.7 37.5 35.8 35.0	42.2 40.6 38.8 37.4 36.1 39.0	42.3 40.9 39.5 37.4 35.7 39.2	42.6 42.0 40.3 37.8 35.7 39.7	41.6 41.6 38.8 37.3 36.7 39.2
28/1-36/259/ 28/1-36/273/ 28/1-36/287/ 28/1-36/301/ 28/1-36/316/	48.7 48.2 45.9 45.9 44.2 \$\overline{\alpha}\$ 44.2	48.7 46.0 45.2 43.7 42.8	48.1 46.8 44,8 43.2 44.5 45.5	48.3 46.7 45.9 44.3 43.4 45.7	48.8 47.8 46.4 44.6 43.4 46.2	48.6 46.6 45.9 44.8 43.5 45.9	49.2 47.0 44.6 44.1 43.5 45.7
28/2-72/259/ 28/2-72/273/ 28/2-72/287/ 28/2-72/301/ 28/2-72/316/	48.5 47.5 43.9 42.8 41.9 ∞ 44.9	47.2 45.4 43.4 41.2 39.5 #3.3	47.9 46.1 44.5 42.6 41.5	48.1 46.6 43.8 42.2 41.1 44.4	49.0 46.8 44.1 42.9 41.3 44.8	48.9 46.4 45.7 42.9 42.7 45.3	47.5 45.7 45.7 42.1 40.9 44.4
DVERALL	ž 42.7	41.6	42.2	42.3	42.7	42.8	42.5

EFFECT OF DYEING PROCESS ON WALES A/W

Table 6

EFFECT OF DYEING PROCESS ON WIDTH A/W

SAMPLE	WidAW R-95	WidAW RS	WidAW SS	WidAW WD	WidAW Brazz	WidAW RS-E	WidAW RS-OW
24/1-28/291/ 24/1-28/306/ 24/1-28/321/ 24/1-28/337/ 24/1-28/354/ 24/2-56/291/ 24/2-56/306/ 24/2-56/37/ 24/2-56/354/ 28/1-36/259/ 28/1-36/259/ 28/1-36/287/ 28/1-36/316/ 28/2-72/259/ 28/2-72/259/ 28/2-72/287/ 28/2-72/301/ 28/2-72/316/ 28/2-72/316/ 28/2-72/316/ 28/2-72/316/ 28/2-72/316/	66.1 70.6 71.0 75.2 76.3 76.3 76.3 76.3 75.0 874.1 65.7 65.7 65.7 65.7 65.7 65.7 65.7 65.7	68.6 775.8 75.7 76.8 775.7 76.8 775.7 76.3 75.7 76.3 7 76.3 7 7 6 7 7 6 7 7 5 .1 9 7 5 .1 9 7 7 5 .1 9 7 5 .1 9 7 5 .1 9 7 5 .1 9 7 5 .1 2 8 9 9 .1 2 .7 6 .2 7 7 5 .2 7 6 .2 7 7 6 .2 .7 7 6 .2 .7 7 6 .2 .7 7 6 .2 .7 7 6 .2 .7 7 6 .2 .7 7 6 .2 .7 7 6 .2 .7 7 6 .2 .7 7 6 .2 .7 7 6 .2 .7 7 6 .2 .7 7 6 .2 .7 7 6 .2 .7 7 6 .2 .7 7 6 .2 .7 7 6 .2 .7 7 6 .2 .7 7 .2 .1 6 .2 .1 7 .2 .1 6 .2 .1 7 .2 .1 7 .2 .1 6 .2 .1 7 .2 .1 7 .2 .1 6 .1 5 .1 6 .1 5 .1 7 7 .2 .1 7 .2 .1 6 .1 5 .1 7 .2 .7 7 .0 .1 5 .1 7 .0 7 .2 .7 7 .0 .1 .5 .1 7 .2 .7 7 .0 .1 .2 .1 7 .2 .1 .1 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	68.1 71.1 773.0 772.7 69.9 69.9 74.8 76.7 69.9 74.8 76.7 73.2 667.7 73.2 668.1 668.1 74.8 76.3 71.8 71.4 71.3	66.5 694.4 774.0 774.0 774.0 779.4 679.2 8.0 77779.4 667.0 4 668.3 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	66.4 69.1 772.6 71.5 75.0 78.1 78.4 77.0 78.3 77.0 78.3 66.3 66.3 66.3 66.3 66.3 66.3 66.3 6	67.3 68.4 74.4 76.7 68.5 76.7 68.5 76.6 71.6 68.5 76.6 76.7 68.5 76.0 76.6 76.2 7 68.0 7 68.5 2.7 6 89.0 7 5.0 68.0 7 6 89.0 7 5.0 68.0 7 6 89.0 7 6 89.0 7 6 89.0 7 6 89.0 7 6 89.0 7 7 6 89.0 7 7 6 89.0 7 7 6 89.0 7 7 6 89.0 7 7 6 89.0 7 7 6 89.0 7 7 6 89.0 7 7 6 89.0 7 7 6 89.0 7 7 6 89.0 7 7 6 89.0 7 7 6 89.0 7 7 6 8 8 9 .7 8 9 .7 8 7 8 9 .7 8 7 8 9 .7 8 7 8 9 .7 8 7 8 9 .7 8 7 8 9 .7 8 7 8 9 .7 8 7 7 7 5 .8 9 .7 8 .8 9 .7 8 .8 9 .7 8 .8 7 .8 9 .7 8 .8 9 .7 8 .8 7 .8 9 .7 8 .8 7 .8 9 .7 8 .8 .8 7 .8 .8 .8 7 .8 .8 .7 7 .8 .8 .8 .8 .6 .8 .8 .8 .7 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8	669.988322225744988867333256 699.98322225744988867333256
OVERALL	71.2	73.0	72.0	71.8	71.1	71.0	71.5

SAMPLE	Bst.AW R−95	Bst.AW RS	Bst.AW SS	Bst.AW WD	Bst.AW Brazz	Bst.AW RS-E	Bst.AW RS-OW
SAMPLE 24/1-28/291/ 24/1-28/306/ 24/1-28/321/ 24/1-28/357/ 24/2-56/291/ 24/2-56/306/ 24/2-56/321/ 24/2-56/354/ 24/2-56/354/ 28/1-36/259/ 28/1-36/267/ 28/1-36/301/ 28/1-36/316/ 28/2-72/259/	R-95 525.2 502.2 434.3 434.3 436.0 443.8 643.8 643.8 643.8 641.1 609.9 394.9 394.9 394.9 378.6 354.9 354.9 5 601.4	RS 509.0 476.7 476.7 423.1 460.4 423.1 423.1 424.2 685.0 623.6 599.5 583.5 623.2 3997.1 378.2 37	SS 528.2 513.3 482.8 461.2 489.8 461.2 489.8 461.2 689.8 461.2 689.8 4689.8 6682.4 6682.4 6682.4 528.7 527.7 527.5	WD 517.0 498.3 492.3 492.3 470.0 4470.0 4470.0 696.2 676.3 656.8 603.6 616.0 649.6 616.8 649.6 616.8 449.6 449.6 449.6 449.6 449.6 583.3 65.8 8 583.8 6 585.8 6 565.8 6 565.8 6 565.8 6 565.8 6 565.8 6 565.8 6 575.8 575.9 575.9 575.9 575.9 575.9 575.9 575.9 575.9 575.8 575.9 5757	Brazz 535.8 519.8 511.1 462.8 443.4 443.4 443.4 443.4 443.4 500.4 620.8 606.4 620.8 606.4 429.8 606.4 429.8 374.2 8 415.8 631.9 0 15.8 631.9 0 15.8 16.9 17.9 16.9 17.9	RS-E 506.0 493.5 454.25 410.3 454.25 671.9 6318.6 578.9 414.8 55804.8 579.4 379.0 3379.0 3379.0 3379.0 5580.3 379.0 5580.3 5590.3 5590.	RS-0W 526.8 521.7 497.3 95.3 702.7 6614.1 592.6 447.2 592.6 447.3 592.6 634.1 592.6 447.8 398.1 572.6 447.8 572.6 573.6 573.6 579.6
28/2-72/287/ 28/2-72/287/ 28/2-72/301/ 28/2-72/316/	554.0 559.1 521.7	526.6 508.9 487.5	545.8 540.8 528.5	577.6 550.4 534.6 504.6	572.1 546.8 513.8	547.3 515.2 493.0	554.0 517.0 490.2
0	-52 570.1	532.4	552.5	\$ 50.6	575.2	538.6	550.5
WERALL	x 523.3	504.7	524.1	523.9	536.4	501.6	511.8

EFFECT OF DYEING PROCESS ON BURST STRENGTH A/W

Table 8

	e i a sina	I NOCLOS	011 000	III		UNEER A	EFLECIN
		"G"	"6"	•G*	*G* ·	•G•	*G*
SAMPL	E	R-95	RS	SS	HD	Brazz	RS-E
24/1-28/2 24/1-28/3 24/1-28/3 24/1-28/3 24/1-28/3 24/1-28/3	91/ 06/ 21/ 37/ 54/	10.4 10.0 10.6 10.0 10.1	11.3 10.9 11.4 11.5 11.0	11.9 11.8 10.7 11.2 11.2	12.2 11.5 11.6 11.6 11.5	11.4 11.5 11.1 11.3 11.1	10.6 9.5 9.7 9.6 9.9
24/2-56/2 24/2-56/3 24/2-56/3 24/2-56/3 24/2-56/3 24/2-56/3	91/ 86/ 21/ 37/ 54/	11.5 11.4 10.7 11.8- 11.7	12.1 11.9 12.3 12.2 11.5	12.8 12.4 12.6 12.4 11.9	13.2 12.7 12.6 12.4 11.9	12.2 12.3 11.8 12.0 11.4	11.2 10.5 11.0 10.6 10.4
28/1-36/2 28/1-36/2 28/1-36/2 28/1-36/3 28/1-36/3 28/1-36/3	59/ 73/ 87/ 01/ 16/	10.7 10.0 9.4 10.0 9.5	11.3 10.7 11.1 10.9 11.4	11.7 11.6 11.4 11.3 11.2	11.9 11.4 11.6 11.5 11.2	11.5 11.3 11.1 10.6 10.6	10.2 10.5 10.4 9.6 9.5
28/2-72/2 28/2-72/2 28/2-72/2 28/2-72/3 28/2-72/3 28/2-72/3	59/ 73/ 87/ 21/ 16/	11.5 11.1 11.4 11.8 11.5	12.1 11.5 11.8 11.9 11.9	12.9 12.8 12.4 12.1 11.9	12.6 12.6 12.8 12.4 11.9	12.0 11.8 11.7 11.6 11.3	10.8 11.3 10.5 10.5 10.6
	5	10.8	11.54	11.9	12.1	11.5	0.35
	MEANL	39.25	40.48	41.06	41.38	40.42	38.47

EFFECT OF DYEING PROCESS ON COLOUR YIELD, GREEN REFLECTANCE

TUBULARVOW COLOUR YIELD

SAMPLE	"R"	"R"	"G"	"G"	"B"	"B"
	R-95	RS-OW	R-95	RS-OW	R-95	RS-OW
18/1-16/344/	5.3	8.7	11.4	16.2	34.7	40.5
18/1-16/362/	4.9	16.2	10.5	25.4	33.1	51.0
18/1-16/380/	4.7	10.5	10.1	18.8	32.2	43.6
18/1-16/399/	5.3	10.8	11.2	19.2	34.3	44.4
18/1-16/419/	5.0	8.8	10.8	16.3	33.0	41.0
18/1-20/327/	5.1	8.7	10.8	16.2	32.9	40.4
18/1-20/344/	5.4	8.7	11.4	16.2	34.7	40.2
18/1-20/362/	5.0	16.2	10.6	26.0	33.1	51.0
18/1-20/380/	4.7	16.1	10.2	25.3	32.3	51.3
18/1-20/399/	4.7	17.1	10.0	26.5	31.7	52.8
18/1-24/311/	5.7	8.8	11.8	16.5	35.1	41.4
18/1-24/327/	5.3	8.7	11.1	16.1	33.8	40.6
18/1-24/344/	5.0	8.6	10.6	16.2	32.3	40.5
18/1-24/362/	5.1	8.6	10.7	15.8	32.8	40.0
18/1-24/380/	4.8	8.6	10.3	15.8	31.6	39.9

Table 10

18 GAUGE SINGLE JERSEY, THO-FOLD YARNS.

TUBULARVOW COLOUR YIELD

SAMPLE	"R"	"R"	"G"	"G"	"B"	"B"
	R-95	RS-OW	R-95	RS-OW	R-95	RS-OW
18/2-32/344/	6.0	9.0	12.3	16.3	35.7	39.8
18/2-32/362/	5.7	17.4	11.8	26.6	35.2	52.0
18/2-32/380/	5.3	11.3	11.2	19.6	33.9	44.2
18/2-32/399/	5.3	11.6	11.2	20.1	33.9	44.9
18/2-32/419/	5.5	9.5	11.7	17.2	33.8	41.7
18/2-40/327/ 18/2-40/344/ 18/2-40/362/ 18/2-40/380/ 18/2-40/399/	5.9 5.9 5.4 5.2	9.4 9.2 17.8 10.9 11.8	12.2 12.2 11.3 10.9 10.7	17.1 16.7 27.4 19.3 20.1	35.7 35.7 34.1 32.9 32.2	41.3 40.8 52.8 43.7 44.5
18/2-48/311/ 18/2-48/327/ 18/2-48/344/ 18/2-48/362/ 18/2-48/388/	5.8 5.6 5.2 5.1	9.0 9.3 8.9 16.3 10.5	11.9 11.6 11.5 11.0 10.5	16.6 17.0 16.4 25.6 18.5	34.9 33.9 34.0 33.7 32.1	41.0 41.8 40.7 51.9 43.5

24 GAUGE SINGLE JERSEY, SINGLES YARNS.

TUBULARVOW COLOUR YIELD

SAMPLE	"R"	"R"	"G"	"G"	"B"	"B"
	R-95	RS-OW	R-95	RS-OW	R-95	RS-OW
24/1-24/306/ 24/1-24/321/ 24/1-24/337/ 24/1-24/337/ 24/1-24/354/ 24/1-24/372/	5.3 5.3 5.0 5.6 5.0	12.4 12.3 9.2 6.0 5.9	10.9 11.0 10.7 11.9 10.7	20.9 20.9 16.8 12.2 12.1	33.2 33.6 32.4 34.5 32.3	46.0 46.4 41.5 35.4 35.1
24/1-28/291/	4.8	16.1	10.4	25.3	32.7	51.9
* 24/1-28/306/	4.7	10.6	10.0	18.8	31.3	44.2
* 24/1-28/321/	4.9	11.7	10.6	19.9	32.5	44.9
* 24/1-28/337/	4.8	8.7	10.0	16.2	30.9	41.4
* 24/1-28/337/	4.6	8.6	10.1	16.0	31.0	40.9
24/1-32A276/ 24/1-32A291/ 24/1-32A306/ 24/1-32A321/ 24/1-32A321/ 24/1-32A337/	5.3 4.8 4.5 4.5 4.8	8.9 16.4 16.8 10.6 11.5	11.1 10.3 9.6 9.6 10.1	16.3 25.8 26.4 18.8 19.8	33.3 32.5 31.1 30.6 31.5	40.9 52.6 53.2 44.7 46.0
24/1-32/276/	5.0	8.7	10.5	16.0	32.3	40.3
24/1-32/291/	4.8	15.8	10.2	24.9	32.0	51.7
24/1-32/306/	4.7	10.3	9.9	18.5	31.2	44.0

Table 12

24 GAUGE SINGLE JERSEY, TWO-FOLD YARNS.

TUBULARVOW COLOUR YIELD

SAMPLE	"R"	"R"	"G"	"G"	"B"	"B"
	R-95	RS-OW	R-95	RS-OW	R-95	RS-OW
24/2-48/306/ 24/2-48/321/ 24/2-48/337/ 24/2-48/354/ 24/2-48/354/ 24/2-48/372/	5.6 5.2 × 5.7 5.7 5.5	12.3 9.6 × 6.3 × 6.3	11.4 10.9 11.9 11.9 11.5	20.8 17.3 12.8 12.9 12.3	34.0 33.0 34.2 34.5 33.7	45.7 42.3 36.5 36.8 35.6
24/2-56/291/ 24/2-56/306/ 24/2-56/321/ 24/2-56/337/ 24/2-56/354/	5.6 5.2 5.7 5.6	11.2 12.4 12.5 9.1 ~5.9	11.5 11.4 10.7 11.8 11.7	19.6 20.8 21.8 16.8 12.2	33.9 34.1 32.8 34.2 34.1	44.8 46.3 46.8 42.2 35.6
24/2-64/276/	5.5	16.8	11.4	26.2	34.1	53.3
24/2-64/291/	5.3	11.0	10.9	19.4	33.1	45.0
24/2-64/306/	5.4	12.0	11.1	20.4	33.6	45.7
24/2-64/321/	5.3	9.1	10.8	16.7	32.8	42.0
24/2-64/337/	5.3	5.9	11.2	12.1	33.3	35.6

28 GAUGE SINGLE JERSEY, SINGLES YARNS.

TUBULARVOW COLOUR YIELD

SAMPLE	"R" R-95	"R" RS-OW	"G" R-95	"G" RS-OW	"B" R-95	"B" RS-OH
28/1-32A273/ 28/1-32A287/ 28/1-32A301/ 28/1-32A316/ 28/1-32A316/ 28/1-32A332/	5.0 4.9 4.9 5.0 5.2	10.6 11.5 8.8 8.9 5.7	10.4 10.2 10.2 10.7 11.0	18.8 19.8 16.2 16.4 11.8	32.2 31.7 31.5 32.6 33.2	44.3 45.4 41.1 42.0 35.2
28/1-36/259/ * 28/1-36/273/ * 28/1-36/287/ * 28/1-36/301/ * 28/1-36/316/	5.1 4.7 4.5 4.8 4.6	9.1 16.3 10.3 11.5 11.2	10.7 10.0 9.4 10.0 9.5	16.7 25.6 18.3 20.0 19.5	33.1 31.8 30.2 31.3 30.1	41.5 52.7 44.0 46.1 45.6
28/1-40/246/ 28/1-40/259/ 28/1-40/273/ 28/1-40/287/ 28/1-40/287/ 28/1-40/301/	5.1 5.5 4.9 4.6 4.4	8.6 8.5 16.0 15.9 10.7	10.7 11.3 10.4 9.9 9.4	15.9 15.7 25.3 25.4 19.0	32.7 33.4 32.5 31.4 30.2	40.5 40.2 52.7 53.4 45.6
28/1-32/273/	4.9	10.8	10.2	19.1	32.0	44.8

Table 14

28 GAUGE SINGLE JERSEY, THO-FOLD YARNS.

TUBULARVON COLOUR YIELD

SAMPLE	*R* R-95	*R* RS-OH	"G" R-95	G RS-ON	*8* R-95	"B" RS-ON
28/2-64/273/ 28/2-64/287/ 28/2-64/301/ 28/2-64/316/ 28/2-64/332/	4.8 5.0 5.1 5.5	11.3 12.5 9.4 9.6 6.1	10.0 10.5 10.7 11.0 11.6	19.8 21.1 17.1 17.4 12.4	38.9 32.4 32.8 34.5 34.8	45.4 46.7 42.6 42.8 36.1
28/2-72/259/ 28/2-72/273/ 28/2-72/287/ 28/2-72/381/ 28/2-72/381/ 28/2-72/316/	5.6 5.4 5.7 5.4	18.3 11.3 12.5 9.4 5.9	11.5 11.1 11.4 11.9 11.5	28.1 19.7 21.2 17.1 12.1	34.5 33.5 34.1 34.5 34.1	54.8 45.7 47.4 43.4 35.9
28/2-88/246/ 28/2-88/259/ 28/2-88/273/ 28/2-88/287/ 28/2-88/287/ 28/2-88/381/	5.5 5.2 5.1 5.4	9.3 16.8 11.1 12.1 8.9	11.4 10.9 10.6 11.2 11.3	17.0 26.3 19.6 20.8 16.6	34.2 33.3 32.6 33.6 33.7	42.3 53.6 46.3 47.4 42.6
94 SANNES						
ž			¥0.58			
G.L.			- 14			
7.4			1.29			
Mean L' volue			39.39			

SINGLE JERSEY SPIRALITY TRIAL

TUBULARvOPEN WIDTHremaining OW samples.

SAMPLE	"R" RS-OW	"G" RS-OH	*B* RS-ON	SAMPLE	"R" . RS-OH	G" " RS-OW	B" RS-OW
18/1-20X327/ 18/1-20X344/ 18/1-20X362/ 18/1-20X380/ 18/1-20X380/ 18/1-20X399/	9.8 16.0 10.4 11.7 8.6	16.7 24.9 18.5 28.8 15.8	41.1 50.1 43.2 45.1 39.7	24/1-28X291/ 24/1-28X306/ 24/1-28X321/ 24/1-28X337/ 24/1-28X337/ 24/1-28X354/	9.8 5.7 5.7 5.6 5.2	16.4 11.9 11.6 11.5 11.0	41.2 34.7 34.1 34.0 32.5
28/1-36X259/ 28/1-36X273/ 28/1-36X287/ 28/1-36X381/ 28/1-36X381/ 28/1-36X316/	8.8 5.6 5.6 5.6	16.0 11.9 11.5 11.6 11.5	40.5 34.8 34.4 34.4 34.2	24/1-28S291/ 24/1-28S306/ 24/1-28S321/ 24/1-28S337/ 24/1-28S3354/	18.0 12.1 12.1 11.8 5.8	27.7 20.6 20.6 20.2 11.9	53.8 46.0 46.1 45.6 34.7
				24/1-28L291/ 24/1-28L306/ 24/1-28L321/ 24/1-28L321/ 24/1-28L337/ 24/1-28L354/	10.8 11.9 8.8 8.8 8.8	19.1 20.3 16.3 16.3 16.3	44.6 45.8 41.3 41.1 41.5
				24/1-28H291/ 24/1-28H306/ 24/1-28H321/ 24/1-28H321/ 24/1-28H337/ 24/1-28H354/	16.2 16.3 10.3 11.1 8.5	25.4 25.4 18.4 19.2 15.7	51.6 51.7 43.8 44.2 39.8
				124 SAMAES 9 MEAN MEAN 'L' 0	E S% C.L. %A 1 °L° VALLE F LANE BATCH	18.7 0.72 3.84 50.34 41.06	,

Table 16

SINGLE JERSEY PROJECT K2.

TUBULAR & OW	MERCERISAT	ION - M	ERC'D	FABRICS	- COLOUR	YIELD
SAMPLE	"R" Omez	"R" Kwfrs	*G* Omez	"G" Kwfrs	"B" Omez	*B* Kwfrs
24/1-28/291/ 24/1-28/306/ 24/1-28/321/ 24/1-28/337/ 24/1-28/337/ 24/1-28/354/	4.5 4.6 4.5 4.4 4.4	4.7 4.6 4.7 4.4 4.3	10.3 10.5 10.4 10.2 10.1	10.4 10.2 10.4 9.9 9.7	33.0 33.3 33.1 32.7 32.4	38.7 38.4 38.7 38.1 29.9
24/2-56/291/ 24/2-56/306/ 24/2-56/321/ 24/2-56/337/ 24/2-56/354/	5.3 4.8 4.9 4.7 4.7	5.24 5.48 5.45	11.7 10.8 10.9 10.6 10.4	11.2 11.1 11.3 10.4 11.1	35.5 33.7 33.8 33.1 33.1	31.7 31.1 31.6 30.2 31.3
28/1-36/259/ 28/1-36/273/ 28/1-36/287/ 28/1-36/301/ 28/1-36/316/	4.9 4.7 4.6 4.6	4.8 4.7 4.9 4.7 4.8	10.9 18.6 18.0 18.4 18.5	10.5 10.5 10.6 10.2 10.4	34.0 33.4 32.5 33.5 33.3	31.2 31.4 31.4 30.7 31.3
28/2-72/259/ 28/2-72/273/ 28/2-72/287/ 28/2-72/301/ 28/2-72/301/ 28/2-72/316/	5.3 5.1 5.1 4.7 4.8	5.2 5.5 5.1 5.3	11.7 11.3 11.2 10.6 10.7	11.1 11.2 11.4 10.9 11.1	35.4 34.7 34.7 33.6 33.9	31.7 32.1 32.0 31.4 32.0
	ż		10.69	10.68		
5	Ban L		39.06	39.05		

LOT 7 OMEZ TUBULAR MERCERUED AT TOSI

		EDGE			MIDDLE			EDGE		
SAMPLE		RED 7	BLUE -	GREEN	RED 52	BLUE		RED 🛣	BLUE₅	
24/1-24/291	5.5 S	4.31 4.20 4.26 4.29	31.21 30.87 31.61 31.23	9.83 9.98 11.9 9.84	+ 21 + 31 + 31 + 31 + 32	31.04 31.13 31.49 31.22	PC-P P8-P F4-P	4-16 4-28 +-34 4-2b	31.20 30.67 30.59 30.52	
24/1-28/306	102 C	429 445 432 432	30.92 31.33 31.35	9.69	4.38	30-17 30-60 30-68	10.01 10.01	1 68 4 51 4 51 4 60	31.79	
24/1-28/321	1.50 1.50	4.++ 4.++ 4.++	30.65 30.65 30.65	17.9 25.9 25.9 9.67	4-15 4-15 4-22 4-22	31-19 30-63 31-25 31-02	9.67 9.54 42.6	4-18 4-18 4-32 4-22	30.14 20.03 31.05 31.05	
24/1-28/337	9.61 9.34 9.35	4 12 10 4 11 4	30.04 29.66 29.59 29.70	9.49 9.51 9.46	4.27	30-34 30-92 30-81	9.40 9.40 9.40	4-30 4-32 4-38 4-38	30-51 30-51 30-52	
24/1-28/3.54	9.37 9.28 9.28	4.05 4.05 4.04	21.77 30.78 30.31 30.48	9.47 9.45 9.23 9.38	4.03 4.93 4.03	27.99	9-31 7.45 9.56	87 4 97 4 97 4 97 4 97 4 97 4 97 4 97 4 9	30.05 30.74 30.74	
28/1-34/259	4.191	4.54 4.54 4.54	31.85 31.84 32.23 32.14	10.20	4.54 4.55 4.52	31.41 32.75 32.71	11-01	4.83 4.83	31.55	
28/1-36/273	9.22 9.22 9.22	4.03 4.34 4.46	31.52 31.45 31.12 31.29	9.44 9.46 9.410	4:0° 4:15 4:14	30.78 30.78 30.14	9-51 9-14 9-14	4.16 4.09 4.16 4.13	30.41	
28/1-36/287	59.6 54.6 54.6	4-25 4-24 4-04	30.05 30.55	9.21 9.48 9.22 9.30	4.15 4.15 4.10	30.26 30.26	9.65 9.61 9.44	91-17 Lo:7 12-17	92.08 67.08 52.08 51.02	
28/1-34/301	38.8	4 4 5 - 6	21.50 3.21 3.77 3016	11-1 9-18-19 28-18	+ 36 + 25 + 21 + 2 b	3072 31.94 31.52	10.05	4.3L 4.28 4.27 4.30	31.06 30.81 31-24 31-24	
28/1-36/216	9.40 9.73 10.34	4.54 4.2) 4.20	30.21 30.14 31.85	21.01	4.29 4.40 4.40	30-15 30-15	9.45	4++++ 45:4 54-44	30-44 30-52 30-52	
24/2-54/271	10.01	4.4 4.66	32.44 32.51 33.28 33.91	10-63	4-70 4-16 4-82 4-82	32.95 32.95	11.17 11.35 11.46	5:30 6:29 6:77 5:45	34-85	
24/2-54/306.	40.01 40.01 45.01	4.51 4.58 4.64	31.98 31.72 32.29 31.99	21.01 13.5 6.15	4.26 4.25 4.25 4.78	50.64 31.81 30.68	10.28 10.04 10.04	4.55 4.63 4.65 4.65	32-18 31-84 31-84	
24/2-56/321	4-73 10-53 10-12	4 48 4 46 4 17 4 13 4 13	29.19 31.45 30.63 30.41	9-18 8-18 8-18	4:41 4:47 4:44 4:44	20-75 30-15 30-45	10.01 10.01	4 60 4 26 4 60 4 48	30-73 30-33 30-49	
24/2-56/337	10.01	4.24 4.54 4.54	30 66 30 66 30 69	9.26 9.26	4:54 3:89 4:16	29.13 29.53 39.51 29.65	10.23	5.00 4.76 4.76	30.24 30.68 30.42 30.63	
24/2-54/354-	146 141 941	12.0	29.92 29.92 29.92	4.56 4.35 4.38	4.29	29.85 29.44 29.57	4.6.6	448 4-39 4-18 4-18	20-02	
28/2-72/259	12.16	82.5 5.35 28:5	34-16 34-01 37-33 33- 55	10.24	4.16 4.54 4.10	31-06 31-15 32-36 32-36	11-11 22-21 71-11	22.23	34.26	
28/2-72/27	29.01 15.01 51-01	5.00 4.94	31.60	91.01 91.01	5.02 5.04	31-46	10-04 10-04	502 502	32.02	
28/2-24/287 -	8.83 8.83 9.74 8.06	144 13.5	30.23 30.26 30.41	1:01 1:01 1:01	4 55	31.82 30.63 31.95 31.53	10.52 (10.52	2015 2015 2015 2015	314 31-12 31-60	
28/2-72/301 -	98.5 9.8.6	15-4 4-5-4	31.83 30.34 31.22	21.01	4 28	30 -5 4 30 -5 4 31 0 5	9.01 1.58 9.86	4.28 4.28	29.47 30.44 11.49 30.53	
28/2-72 /34	11-94 10-19 12:01	4.49 4.49	30.23 31.59 31.59 31.21	9.55 9.55	12-43	31.23	138	4.7% 4.4% 4.4%	30.57 30.57 30.57 30.76	
ž	= 9.96	444	SI-11	9.8	4-38	31.0	10.12	+ 54 .	31.24	

LOT 8 CONTROL SET -TOSI

		EDGE			MIDDLE		EDGE		
SAMPLE		RED	BLUE_		RED 🛬	BLUE		RED	
24/1-28/29/	11.31 11-44 10-96	54.5 54.5 54.5	03.82 32.50 84.21	74.01 74.01 74.01 74.01	5.32 5.32 5.06 5.36	33.68 37.68 34.05 34.05	84.01 11.11 89.01	5.43	30.78 32.80 32.33 31.97
24/1-28/306	11-03 10-81 11-01	5.31 5.25 5.28 5.31	33.52 33.42 33.42 34.41	+1-01 +1-01 17:01	5.17	33.94 33.04	20-11 1-05	5:32 5:32 5:30	32.49
24/1-28/321	10.91 17.01 10.78	5.28 5.28 5.21 5.21	32.83 32.81 32.59	51.01 11.01 11.01	5.24 5.24 5.24	33.13 33.34 33.05 33.05	カレ・01 オレ・01 オラ・01 オラ・01	5.08 5.08 5.12	31-11 32-51 32-51 32-21
24/1-28/337	10.01 50.01 10.01	5.34 5.29 5.41 5.41 5.34	33.43 32.72 32.78 32.91	40.01 70.01 20.01	5.3 5.3 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	33-11 32-98 33-06	01.30 11.25 11.28	5.45 5.45 5.45 5.46	33.65 33.69 33.63
241-22/35+	66-91 41-11 56-01 68-01	5.30 5.30 5.30	52.48 52.63 32.90 32.67	11-12 11-03 11-03	5.48 5.38 5.38 5.38	32.71 33.00 31.90 32.53	28.01 10.81	5:08 5:16 5:18	35.26 34.12 32.11 33.23
28/1-36/259	02-11 11-12 11-20	5.46 5.50 5.56 5.56	33.81 33.38 33.67 53.62	11-11 01-11 1-11	5.39 5.39 5.43 5.43	33.56 33.64 33.64	90.11 24 01 24 01	2.2.2	33.14
28/1-34/273	20-11 21 - 11 21 - 11	5:45 5:42 5:31 5:41	33.26 33.60 33.60 33.42	10.36 10.36	5.22	32.69 32.57 32.40 32.40 82.55	26.01 26.01	5.25	33.52 32.45 32.66 32.66
28/1-36/287	11.03 11.10 11.11	5:45 5:42 5:40 5:42	33.27 33.20 33.18 33.21	11-16 11-21 11-31	5.75 5.55 5.45 5.45 5.56	33.46 53.85 33.46 33.46	دی. ما کیا ط کیا ط	5.19 5.24 5.24	33.03 33.03
28-36/301	10.65 9.70 9.51 32.86	4-50 4-50 4-79	30.62 29.72 29.76 29.76	10-18 10-18	4-42 5-24 5-64 5-93	31-10 31-97 31-84 31-63	59.01 51.01 19.01 19.01	5.15 5.15 5.19 5.19	32.26 32.46 31.96
22/1-34/316	10.55 10.56 10.56	21.2 5.15 5.15	32.50 32.04 32.04 32.04	42.01 82.01 99.01 64.01	5:35 5:40 5:45	32.57 32.57 32.57 32.11	10-21 10-28	5.04 4.95 4.96	31.72 31.77 31.37 31.62
24/2-56/291	11-99 11-93 12-13 12-01	909 52.9 600.9	35.24 35.25 35.27 35.35	8 ++11 1 L - 11 5 2 - 11 8 +-11	5.76 5.78 5.78 5.78	34.76 34.88 35.31 35.31	1.40 1.47 1.47 1.47	5.73 S.68	34.14 34.14 34.22 34.39
24/2-54/306	25.11 1.9.11 1.9.11	5.86 5.91 5.94	36.27 35.73 35.40 35.8	11.91 11.87 11.63 11.80	5.24 5.84 5.77 5.60	34.47 34.82 34.41 34.56	12.24 11.79 11.84	5.79 6.00 5.80 5.80	35.44 35.64 35.63 35.63
24/2-54/321	10-65 10-65	010-20-25 20-25 92-5	28.62 3049 33.03 3071	11.18 10.58 10.58	64.9 12.5 495.5 49.5	334.05 34.05 34.33 34.33		5-40 5.46 5.46	33.85
24/2-54/337	87.01 42.01 79.71	5.46 5.46 5.33 5.48	32.1 33.6 33.5 32.26	11-68 11-45 11-53	5.62 5.45 5.62	33-15 32-13 33-62 33-62	11-03 11-05 11-03	5.36 5.35 5.35 5.35	32.58 32.78 32.57
24/2-56/354	10-26 10-35 10-24	4.97 4.97 4.97	31-42 30 -68 30 -66 30 -66	11-65 10-90 10-93	50.5 50.5 51D	32.41 32.24 34.41 33.03	10-22	4.96 4.96	32.46 32.99 31.97 32.47
28/2-7/259	10.82 10.92 11.36 11.03	5.6D	34-71 33.42 74-28 34-30	11-93 11-29 11-29	12:5 57:2 5'64	34-60 34-56 34-41 34-41	11.63 12.01 11.76 11.80	5-30 5-75 74-3	34-10
28/2-72/273	03-Q1 لاکر 19-01 11-11 14-01	5.15 5.42 5.31 5.31	33.51 35-15 35-38 33-53	11-36	5.52 5.52 5.54	34.27 34.15 31.15 34.13	11.56 11.54 11.57	5-54 5-46 5-45	34.55 34.78 34.59
28/2-72/287	12:55 11:46 11:49 11:83	5:23 5:53 5:53	35.34 31.15 33.59 33.59	11-85 11-39 11-34	5.55	32.97 33.32 33.44 33.44 33.4 4	10-10 10-46	5.32 5.28 5.28 5.28	33.21 33.07 33.67 33.43
28/2-72/301	11.02 1.073 1.073	5.26 5.31 5.31 5.26	33.37 32.40 33.65	11-11 10-8-01 11-11	5.2% 5.15 5.36	33.49 32.44 32.45	10-01 10-84 10-84	5:27 5:24 5:33 5:28	33.10 32.10 12.94 33.00
28/2-72/316	17.01	5.05 5.04 5.00	32.22 31.96 31.76 31.76	10.05	5.20	32.15 32.34 32.34 32.45	885 673 672	5-16 4-72 4-33 4-33	28.87 32.58 32.68
ź	10.95	5.34	33.02	11.03	3.31	3333	10.44	2-23	23/12

LOT 9 CONTROL SET ENGLES

		EDGE			MIDDLE		EDGE		
SAMPLE		RED	BLUE	GREEN	RED	BLUE 🛫		RED ~	8LUE ஆ
24/1-28/291	10-35 10-36 10-35	444 444 444 444 444 444 444 444 444 44	30-76 31-03 31-03 30-8	1:01	4.83 4.85 4.95	30-11 29-12 30-56 30-46	10.28 10.05 10.10	482 494 4138 4138	30.45
24/1-28/306	9.14 9.13 9.07 9.11	432 431 441 454	28.61 28.35 28.22 28.37	- NG 0 0	454 454 154 154 154 154 154 154 154 154	28.62	9.40 9.40 9.26 9.26	44 44 44 88 44 74 74 74	2857
24/-28/321	4.47	4444 4444 6844	29-22-29-22-22-22-22-22-22-22-22-22-22-2	9.15 9.15 9.17	2422 2222	27-15 28 6 28 8(8888 8996 1006 1006	4 26 4 30	28.3
24/1-28/337	9.47 9.30 891 9.25		28.21 29.10 28.75 28.49	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 + + + + + + + + + + + + + + + + + + +	28.05	1000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28.25
24/1-28/354	8-47 8-47 9-30	444 444 444	28-09 28-69 28-63 28-63 28-63	2000 2000 2000 2000 2000 2000 2000 200	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	29-18 27-59 27-52 27-52	20.0	4 4 4 4	18.587
28/1-36/259	1.80 1.80 1.9 1.9	4 4 4 5 4 4 5 4 7 4 5 4 5 4 5 4 5 4 5 7 4 5 5 4 5 5 4 5 5 5 5	29.67 29.53 28.91 28.91	4.80	4 5 4 2 4 5 4 2 4 5 4 2 6 5 3 2 6 5 4 2 6 5 4 5 7 1 6 7 6 7 7 7 6 7 7 7 6 7 7 7 7 7 7 7 7 7	30.05 29.62 29.62 29.62	2222	1 1 4 1	29.38
28/1-34/273	910 114 125	4.47	28.74 28.54 28.47 28.47	4.36 4.35 4.42 4.42	4 4 6 4 4 5 6 3 4 5 6 3 4 5 6 4	28.63	4.22	5 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	28.56
28/1-36/287	17:01 10:46 10:46	4.40	Jr.20 30-57 30-36 30-36	10.29	444 503 440 440	30.55 30.66	10-40 10-40	20.5 90.5	31-03
28/1-36/301	4.05 9.01 8.80	4-23 4-26 4-36 4-28	28-04 27-97 28-28 28-28	8.65 8.92 8.86	4-34 4-30 4-32	27.87 19.12 16.12 27.60 21.12	99.5 99.5 99.5	4.45 4.20 9.76 4.13	25.79
28/1-36/36	8-10 8-10 8-10	4.20 4.4 4.29 4.21	28.16 27.76 27.96 27.96	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4-19 4-28 4-28	28-33 27-54 28-22 28-22	19.8 859 859	4.11	27-90 27-30 28-34
24/2-56/291	10.45 10.56 10.32	50.5 50.5 50.5	31.08 31.14 30.45 31.05	10.29 10.29 10.29	4-90 4-88 4-99 4-99 4-90	30.56 30.56 30.58	4.82 10-12 10-12	50.5 20.5 20.5 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.4	30.97 30.97 30.97
24/2-56/304	9.23 9.98 9.014 9.78	4.40 4.82 4.83 4.53	29.63 29.83 30.32 29.92	10-10 10-14 10-07 10-10	4.86 4.87 4.87 4.92	30-10 30-19 30-46	10:12 10:14 10:15	4.40 4.80 4.81 4.81	30.24 30.24 30.24 30.32
24 2-51 321	10-01 10-01 10-01	4.41	30-81 30-30 30-45 30-45	9.69 9.69 9.64	4 69 4 69 4 68	29-38 28-72 28-95 29-02	9.24 9.26	434	29.29
24/2-54/357	2024 2024 2024 2024 2024 2024 2024 2024	404 404 404	26-28 26-92 26-61 26-60	10.42 10.26 10.42	2002 2005 2005	30.19 30.49 30.66 30.66	10.35 10.35	4 92 4 82 4 84 4 84	30 52
24/2-56/ 254	15.6 54.5 5.65	4:38 4:33 4:33	28-66 29-36 28-90 28-90 28-97	959 959 9-69	4 51 4 51 4 43	29.86 29.36 29.00 29.07	946 9-75 9-75	4.69 4.69 4.52 4.52	2445
28/2-22/259	21-01 4 1-01 4 1-01	5.08 4.92 4.87	10.4 20.82 30.82 38.57	10-33	4 94 4 94 4 94 4 99	30.57 30.73 30.71 30.67	10:51 10:32 10:13 10:32	442 505 410	2040
29/2-72/275	16.01	4 42	30 88 30 68 30 68	12.01 12.01 57.01	48.4	30.58 30.53 30.53	10.39	444 444 444 444 444 444 444 444 444 44	31.00
28/2-72/2 87	96-6 86-6	4-78 4-78 4-78	30-23 30-31 30-17 30-23	10.23 10.04 10.04	4	30 03 29 90 29 94	20.01 50.01 50.01	4.79	30-28 29-23 30-23 30-14
28/2-74 301	10.01	447 413 464 468	30-32 30-14 29-41 29-48	9.66	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	30-21 24-47 29-64	9-93 4-98	100 1 100 100	30.84
28/2-72/316	4:52 4:25 4:24	4.34	29-26 28-91 28-98 29-05	8-0- 6-0- 7-1- 7-1-	4 38 4 39	20 78 28 78	9.19 9.18 9.18	42] 432 432 420	18.87
	9.68	4.62	2945	9.7	4-64	29-43	9.69	461 -	29.44

LOT	10	KLEINEWEFERS	o/w merceused	AT	BNGEL	

	EDGE			MIDOLE			EDGE		
SAMPLE		RED	BLUE		RED	BLUE_	GREEN	RED T	BLUE _
24/1-28/291	9.56 9.42 9.42 9.41	4 · · · · ·	28-3 28-5 28-92 28-92	9.76 9.67 9.64	4.31 4.44 4.44	29.2 28.63 29.23 29.01	9.36 9.36 9.42	4 38 4 38 4 23 4 23	28 48 28 1 28 43 28 43
24/1-28/306	41.9 4.16	4.54 4.52 4.49 4.51	28 46 29 42 29 42 29 42	4-8- 4-78- 9-8- 9-8-	4 36 4 52 4 53 4 453	29 13 29 38 29 67 28 67 28 26	9-67 9-67	4 4 4 4 6 5 6 6 7 6 6	29-18 30-28 20-05
24 /+28/322	9.61 9.44 9.44	4:40 4:40 4:40	28.84 28.22 28.50 28.53	9 1 6 9 1 6 9 1 6	+ + + + + + + + + + + + + + + + + + +	28 28 29 22 27 67 28 45	9.62 9.57 9.66	4 2 2 4	29.85
24/1-28/337	9-00 9-23 9-40 9-21	4.31 4.25 4.29 4.28	28.83 28.15 27:51 28-16	8.80 8.85 9.24	4 . 4 4 . 4 4 . 4 4 . 1 4 . 1 7 . 1	2634 2718 2705 2705	9.28 9.49 9.49	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	29.03
24/1-28/354	8.910 9.70 8.85	3.44 3.46 4.00 3.46	27-12	8.43 8.50 8.38	3.76 3.74 3.73 3.75	27.02 27.06 26-91 2.6-91	8.88 8.88 8.83 8.78	3 96 3 99 3 96	2112
28/1-34/259	9.19 9.19	4.5 4.5 4.5 4.5	24 66 28 40 28 16 28 16	1000 1000 1000 1000 1000 1000	3.48 3.54 3.94	55.12 19.12 19.12	48.8 8.13 8.85	3.49	27.43
28/1-34/273	9.60 9.45 9.64 9.56	4.41 4.48 4.31 4.44	2994 29-10 29-12 29-22	9.45 9.45 9.38 9.42	5 4 4 2 4 4 2 4 4 2 4 4 4 4 4 4 4 4 4 4 4	28:53 28:64 26:97 26:76	8 65 8 65 8 65 9 66 9 66	4 50 4 4 4 33 4 43	28.57.62
28 1-36 287	9-82 9-96 9-86	4-61 4-59 4-62 4-60	30-18 29-36 29-36 29-63	9.54 9.54 9.54	4.43 4.31 4.36 4.38	28.95 29.19 28.93 28.93	9.38 9.11 9.38	434 423 423 423 423 423 423	28.54 28.64 28.65 28.55
28/1-34/301	4.21 454 154	4.44 4.40 4.30	28.65 28.65 28.42 28.42	12.8 19.8 84.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	4 13 4 12 4 12 4 12	27.74 21.38 11.72 11.72 27.41	10.8 5.33 8.01	445 386 3.34 3.88	22.52 27.19 28.00 28.00
28/1-36/316	906 8.69 8.91	344 4.03 4.06 4.03	2674 2753 2811 2811	13.8 18.8 28.8 18.8	4.02 4.05 4.05	27-14 27-72 24-72 24-72	9.05 9.04 8.49 8.86	3.85 4.1 3.97	28.49 27.48 28.00 28.00
24/2-5-1271	61-01 57.01 11.01 77.01	4.85 4.75 4.73 4.73	29:47 28:72 29:41 29:41	9.62 9.83 9.23 9.56	4.30 4.60 4.50 4.4b	26-16 28-07 28-07 29-55	9.76 82.01 82.01	+ + + + + + + + + + + + + + + + + + +	28.32
24/2-54/306	49.01 79.6 79.6	4-10 21.4 21.4 21.4	28-47 29-15 28-15 28-12	1.62 4.65 4.65 9.63	4-50 4-50	29-14 28-07 27-88 27-88 28-36	4.67 8.9.6 7.9 7.9	4-35 4-42 4-42	26-52 27-92 28-37 28-31 29-60
24/2-54 324	41-9- 9-92 9-99	4.82 5.02 4.84	27.99 27.55 29.00 28.15	10-34 10-34 10-34	4.81 4.82 4.50 4.53	30-35 30-35 30-35	20.01 28.1 2.01	10.7	30.12 29.1 28.71 28.71
24/2-56/337	9-15 9-25 9-58	4-38 4-35 4-38 4-31	29 43 27 80 27 33 27 33	9.14 9.84 9.06	4:23 4:16 4:27 4:22	29:32 27:13 27:43 27:62 27:62	8.24 8.64	3.80	26.41
24/2-54/354	58-01 57-01 19-01 6-17-11	5.05 4 41 7 41	30 38 29 48 32 09	9-13 9-00 8-98 9-63	4-12 4-06 4-03 4-07	29-09 29-19 27- 3 2 283b	81.P	4-12 4-69 4-19 8-13	27.51
28/2-12/259	9.61 19.6 21.5 9.68	4-58 4-58 4-58	2786 2841 2834 2820	9.73 9.75 9.8 9.98	4 -68 4 -61 4 -57 4 -62	28-25 28-93 28-60 28-51	9.75 9.00 9.01	4 + - + - + - + - + - + - + - + - +	30.02 30.09 28.31 29.49
28/2-2/278	99-01 19.01 19.01 05.01	5.20 5.05 5 .05	29 82 20 78 30 01 30 21	10.61 10.63 10.45	5.15 5.07 5.04 5.08	26.84 30 27 30 41 29-17	0.55 01 0.52 0.52	505	29.98 29.94 30.51 30.07
28/2-72/287	9.39 9.66 9.05 9.86	4 24 4 29 4 31 4 31	28-62 28-27 27-92 2 8-2 1	9-30 9-40 9-23 9-31	4.31	27-45 27-81 27-79 27-68	8.42 8.42 8.45	4.50 4.11 4.24 4.18	27-18 27-12 21-13 21-44
28/2-72/301	10-16 10-42 10-06	5.0 4.12 4.12 4.81	28.61 29.08 29.04	10.40 10.22 1.86	10.5 10.5 4.6	2692 2858 2947 2832	9-78 9-87 9-87	444 444 1.1.4 4.1.4	30.08 29.06 28.56 29.23
26/2-72/346	9:35 9:29 9:18	4-25 4-39 4-38	28-23 27-46 27-95 26-02	9.21 9.31	153 145 145	28.67 27.30 27.98	18-6 18-6 18-6 18-6	4.66	26.00 29.38 29.38
ž	9-67	4-49	23-64	9.44	4-37	2874	9.45	41	28-33

Table	21
-------	----

COST UNDER SPECIFIED MILL SITUATIONS	1	SMAL MERCERI 2	L ISER 3	4	5	LAI MERCEI 6	RGE RISER 7	8
Merc. Cost (£/kg)	0.26	0.19	0.26	0.16	0.18	0.11	0.19	0.09
Process cost of merc. fabric(£/kg)	0.93	0.87	0.93	0.84	0.71	0.65	0.72	0.62
Process cost of fabric with no merceriser (£/kg)	0.84	0.84	0.84	0.84	0.69	0.69	0.69	0.69
Net merc. cost (£/kg)	0.09	0.02	0.09	-0.01	0,02	0.05	0.02	0.08
Net annual add- itional cost of including a merc. process (£)	25011	6555	24767	-1361	12619 ·	-35381	16462 -	-55996

Costs taken from computer economic model

I, R-307 45 2. Rota-Saltan 3. Salam, Subtrue 4. Salam 5. Bangaan 6. Rota-Shean - Byake

х

Figure 2

х

******* I.I.C. KNITGOODS MERCERISING ECONOMIC MODEL ******** This model will predict for the given set of production figures and mercerising conditions below how the ultimate cost/Kg of the fabric may be influenced. 1. MERCERISING PROCESS COSTS - Cost catergories are itemised and major costs identified. 2. TOTAL ANNUAL COSTS ----- Predicts mill costs before and after merceriser installation when dye savings considered. 3.GRAPH ----Assuming 3 shift availability predicts how total cost of merc fabric reduces as merc prod increases.End point of each curve indicates max capacity of merc at speed stated (1000 tonnes/year) (60 %) (25, 50, 25 % of coloured) (42, 42, 42 & 5 %) rised fabric (pastels:0.6 med.:2 deeps:5) savings in dyestuff due to mercerizing(in %) (pastels:25 med.:40 deeps:60) (£ 15/Kg) (£ 0.4/Kg) 7. price of dyestuff process costs for dyeing
 additional processing costs (incl. bleaching)in £/Kg not mercerised/mercerised 0.4 0.4 pastels: mediums: deeps: whites: 8.4 0.4 10. mercerizing details Press RETURN for a listing of mercerizing details

х

************ MERCERISING DETAILS *************** (£ 0.062/Kg) (£ 0.8/Kg) (£ 0.4/cubic metre) (£ 0.0075/Kg) (£ 0.032/KWh) 1. price of caustic soda 2. price of wetting agent 3. price of water 4. price of steam 5. price of electricity (£ 6/man-hour) 6. price of labour consumption of caustic soda
 consumption of wetting agent
 consumption of water
 consumption of steam
 consumption of electricity
 "consumption" of labour
 "consumption" of fabour (0.66 Kg/Kg of fabric) (0.01 Kg/l merc liquor) (6 cubic metres/hour) (757 Kg/hour) (13.1 KW) (2 men) (0.2 Kg/running metre) 13. weight of the fabric 14. running speed 15. running time (15 running metres/min.) (1920 hours/year) 16. efficiency (88 %) 17. price of mercerising-machinery (£ 56522) 18. costs of installing, etc. (£ 5000) 19. extra costs or overheads (£ 1500) 19. extra costs or overheads (depr. period: 5 years) 20. depreciation-costs 21. maintenance-costs (2 %) 22. interest-costs (10 %)

Figure 6

Annual quantity of mercerised fabric = 272000 Kg Running time avaiable =1920Hours/year Utilisation of merceriser =98% Annual costs of knitgoods mercerising (in £): Caustic soda 11130.24 15.9% 3.1% 5.2% 12.3% Wetting agent Water+Effluent 2176.00 3626.67 8579.33 Steam Electricity 633.46 0.9% 22666.67 32.4% Labour 12304.40 17.6% Depreciation 1130.44 6152.20 1.6% Maintenance 8.8% Interest 1500.00 Extra's/Overheads 2.1% 69,899.48 Total annual mercerising costs: £ 0.257 Mercerising costs per Kg of fabric: Mercerising costs per linear metre of fabric: £ £ *********** RESULTS COMPLETE **********

COMPARISON OF THE TOTAL PROCESSING COSTS BEFORE & AFTER INSTALLING A GIVEN MERCERISER ***** MERCERISED PRODUCTION BASED ON GIVEN PRODUCT MIX (1) (2) (3) %Product Mix "Merc'd of (1) %Time on merc'r 15.0% 42.0% 42.0% 42.0% 23.2× 46.3× 23.2× Pastels Mediums Deeps 15.0% Whites 40.0% 5.8% 7.4% Total %/Wt fabric 100%/1000Tonnes 27%/272000Kg Merc'd ANNUAL PROCESSING COSTS FOR TOTAL MILL PRODUCTION(in£) No Merceriser With Merceriser Cost of dye: Processing costs for dyeing: Cost of mercerising: Cost of additional processing: 216,000.0 240,000.0 171,112.0 240,000.0 69899.0 19.8% 25.7% 8.1% 385,000.0 45.8% 385,000.0 44.5% Total annual cost : 841,000.0 100.0% 866,011.0 100.0% Average cost per Kg of fabric: £0.841 £0.866 Break-even cost of merc'd fabric/Kg: £0.933 Net annual merc cost when dye savings considered: £25011 Net mercerising cost/Kg of fabric: £0.092

Figure 8

No Depreciation Costs MERCERISING COSTS FOR A GIVEN ANNUAL PRODUCTION AND GIVEN KNITGOODS MERCERISING MACHINE ****** Annual quantity of mercerised fabric = 272000 Kg Running time avaiable =1920Hours/year Utilisation of merceriser =98% Annual costs of knitgoods mercerising (in £): Caustic soda 11130.24 21.6% 4.2% Wetting agent Water+Effluent 2176.00 3626.67 8579.33 Steam Electricity 633.46 1.2% 22666.67 44.1% Labour Depreciation 6 2.2% 1130.44 Maintenance 0.00 Interest 0.0% 4 Extra's/Overheads 1500.00 2.9% £ 51,442.80 Total annual mercerising costs: Mercerising costs per Kg of fabric: Mercerising costs per linear metre of fabric: £ 0.189 £ 0.038

******** RESULTS COMPLETE ********

Figure 10

COMPARISON OF THE TOTAL PROCESSING COSTS BEFORE & AFTER INSTALLING A GIVEN MERCERISER ***************** ***** RESULTS ***** MERCERISED PRODUCTION BASED ON GIVEN PRODUCT MIX (3) Werc'd of (1) %Product Mix XTime on merc'r 15.0% 30.0% 15.0% Pastels 42.8% 23.2% 46.3% Mediums Deeps Whites 40.0% 5.8% Total 2/Ht fabric 1882/1888Tonnes 27%/272000Kg Merc'd ANNUAL PROCESSING COSTS FOR TOTAL MILL PRODUCTION(in£) No Merceriser With Merceriser Cost of dye: 216,000.0 171,112.0 20.2% 25.7% Processing costs for dyeing: Cost of mercerising: Cost of additional processing: 240,000.0 51443.0 248,888.8 28.5% 28.3% 6.12 385,000.0 385,000.0 45.8% Total annual cost : 841,000.0 100.0% 847,555.0 100.0% Average cost per Kg of fabric: £8.841 £0.848 Break-even cost of merc'd fabric/Kg: £0.865 Net annual merc cost when dye savings considered: £6555 Net mercerising cost/Kg of fabric: £0.024

Figure 12

Caustic Recovery

**** 2. 3. 4. 5. 6.	********* MERCERISING DETAILS price of caustic soda price of wetting agent price of water price of steam price of electricity price of labour	************** (£ 0.062/Kg) (£ 0.8/Kg) (£ 0.4/cubic metre) (£ 0.0075/Kg) (£ 0.032/KWh) (£ 6/man-hour)
7.	consumption of caustic soda	(0.13 Kg/Kg of fabric)
8.	consumption of wetting agent	(0.01 Kg/l merc liquor)
9.	consumption of water	(6 cubic metres/hour)
10.	consumption of steam	(800 Kg/hour)
11.	consumption of electricity	(14 KW)
12.	"consumption" of labour	(2 men)
13.	weight of the fabric	(0.2 Kg/running metre)
14.	running speed	(15 running metres/min.)
15.	running time	(1920 hours/year)
16.	efficiency	(80 %)
17.	price of mercerising-machinery	(f 81092)
18.	costs of installing, etc.	(f 6000)
19.	extra costs or overheads	(f 1500)
20.	depreciation-costs	(depr. period: 5 years)
21.	maintenance-costs	(2 %)
22.	interest-costs	(10 %)

#*****#*******************************	MERCERISING COSTS FOR A ANNUAL PRODUCTION AND G KNITGOODS MERCERISING M	GIVEN IVEN ACHINE	
Annual quantity of mer	cerised fabric = 272000	Kg	
Running time avaiable	=1920Hours	/year	
Utilisation of merceri	ser =98%		
Annual costs of knitgo	ods mercerising (in £):		
Caustic soda Wetting agent Water+Effluent Steam Electricity Labour Depreciation Maintenance Interest Extra's/Overheads	2192.32 2176.00 3626.67 9066.67 676.98 22666.67 17418.40 1621.84 8709.20 1500.00	3.1% 3.1% 5.2% 13.0% 32.5% 25.0% 2.3% 12.5% 2.2%	
Total annual mercerisi	ng costs:	£	69,654.74
Mercerising costs per Mercerising costs per	Kg of fabric: linear metre of fabric:	Ê	0.256 0.051

******** RESULTS COMPLETE ********

**************************************	**** COMPARISO **** Costs Bef ****	N OF THE TO DRE & AFTER GIVEN MERCE	TAL PROC	ESSING Ing A	
MERCERISED PRODUC	TION BASED ON GI	VEN PRODUCT	MIX 2)	(3)	
Pastels Mediums Deeps Whites	%Product Mix 15.0% 30.0% 15.0% 40.0%	*Merc'd 42.0% 42.0% 42.0% 5.0%	of (1)	XTime on me 23.2% 46.3% 23.2% 7.4%	rc'r
Total %/Ht fabric	100%/1000Tonnes	27%/272	800Kg Me	rc'd	
ANNUAL PROCESSING	COSTS FOR TOTAL	MILL PRODU No Merce	CTION(in riser	£) With Mercer	iser
Cost of dye: Processing costs Cost of mercerisi	for dyeing:	216,000.0 240,000.0	25.7% 28.5%	171,112.0 240,000.0 69655.0	19.8% 27.7%
Cost of additiona	1 processing:	385,000.0	45.8%	385,000.0	44.5%
Total annual cost	:	841,000.0	100.0%	865,767.0	109.0%
Average cost per	Kg of fabric:	£0.84	1	£0.86	6
Break-even cost o	f merc'd fabric/	Kg:		£0.93	2
Net annual merc c	ost when dye sav	ings consid	lered:	£24767	
Net mercerising c	ost/Kg of fabric	:		£0.09	1

No Depreciation	Costs + Caustic Recover	ry	
**************************************	MERCERISING COSTS FOR A ANNUAL PRODUCTION AND G KNITGOODS MERCERISING M	GIVEN IVEN ACHINE	
Annual quantity of merc	erised fabric = 272000	Kg	
Running time avaiable	=1920Hours	/year	
Utilisation of merceris	er =98%		
Annual costs of knitgoo	ds mercerising (in £):		
Caustic soda Wetting agent Water+Effluent Steam Electricity Labour Depreciation Maintenance Interest Extra's/Overheads	2192.32 2176.00 3626.67 9066.67 676.98 22666.67 0.00 1621.84 0.00 1500.00	5.0% 5.0% 8.3% 20.8% 1.6% 52.1% 52.1% 0.0% 3.7% 0.0% 3.4%	
Total annual mercerisin	g costs:	£	43, 527.14
Mercerising costs per K Mercerising costs per 1	g of fabric: inear metre of fabric:	£	0.160 0.032
******** RESULTS COMPL	ETE *****		

****** RESULTS ***** COMPARIS	DN OF THE TO FORE & AFTER GIVEN MERCE	TAL PROCI INSTALL RISER	ESSING ING A	
MERCERISED PRODUCTION BASED ON G	IVEN PRODUCT	MIX	(7)	
%Product Mix Pastels 15.0% Mediums 30.0% Deeps 15.0% Whites 40.0%	*Merc'd 42.0% 42.0% 42.0% 5.0%	ôf (1)	%Time on me 23.2% 46.3% 23.2% 7.4%	rc'r
Total %/Wt fabric 100%/1000Tonne	s 27%/272	000Kg Me	rc´d	
ANNUAL PROCESSING COSTS FOR TOTA	L MILL PRODU No Merce	CTION(in riser	£) With Mercer	iser
Cost of dye: Processing costs for dyeing: Cost of mercerising:	216,000.0 240,000.0	25.7% 28.5%	171,112.0 240,000.0 43527.0	28.4% 28.6% 5.2%
Cost of additional processing:	385,000.0	45.8%	385,000.0	45.9%
Total annual cost :	841,000.0	100.0%	839,639.0	100.0%
Average cost per Kg of fabric:	£0.84	1	£0.84	ł.
Break-even cost of merc'd fabric	/Kg:		£0.83	6
Net annual merc cost when dye sa	vings consid	lered:	£-1361	
Net mercerising cost/Kg of fabri	c:		£-0.6	85

Figure 18

******* I.I.C. KNITGOODS MERCERISING ECONOMIC MODEL ******** This model will predict for the given set of production figures and mercerising conditions below how the ultimate cost/Kg of the fabric may be influenced. 1.MERCERISING PROCESS COSTS - Cost catergories are itemised and major costs identified. 2.TOTAL ANNUAL COSTS ----- Predicts mill costs before and after merceriser installation when dye savings considered. 3.GRAPH ----Assuming 3 shift availability predicts how total cost of merc fabric reduces as merc prod increases.End point of each curve indicates max capacity of merc at speed stated *************** MILL DETAILS *************** total production of fabric
 total production of fabric
 % coloured of tot. production
 % pastels, mediums and deeps
 % of pastels, mediums, deeps
 and whites to be mercerised
 Kg dyestuff per 100 Kg unmerce rised fabric (5000 tonnes/year) (40 %) (25, 50, 25 % of coloured) (33, 33, 33 & 2 %) (pastels:0.6 med.:2 deeps:5) 6. savings in dyestuff due to mercerizing(in %) (pastels:25 med.:40 deeps:60) (£ 15/Kg) (£ 0.4/Kg) 7. price of dyestuff 8. process costs for dyeing not mercerised/mercerised 0.4 0.4 0.4 0.4 0.3 0.3 0.4 0.4 9. additional processing costs (incl. bleaching)in £/Kg pastels: mediums: deeps: whites: 10, mercerizing details Press RETURN for a listing of mercerizing details

Figure 20

XXXXXXXXXXXX MERCERISING DETAILS	******
1. price of caustic soda	(£ 0.062/Kg)
2. price of wetting agent	(£ 0.8/Kg)
3. price of water	(£ 0.4/cubic metre)
4. price of steam	(£ 0.0075/Kg)
6. price of labour	(£ 0.032/KWh) (£ 6/man-hour)
7. consumption of caustic soda	<pre>(0.66 Kg/Kg of fabric)</pre>
8. consumption of wetting agent	(0.01 Kg/l merc liquor)
9. consumption of water	(9.6 cubic metres/hour)
10. consumption of steam	(1152 Kg/hour)
11. consumption of electricity	(30 KW)
12. "consumption" of labour	(2 men)
13. weight of the fabric	(0.2 Kg/running metre)
14. running speed	(40 running metres/min.)
15. running time	(1920 hours/year)
16. efficiency	(80 %)
17. price of mercerising-machinery	(£ 140000)
18. costs of installing, etc.	(£ 10000)
19. extra costs or overheads	(£ 1500)
28. depreciation-costs	(depr. period: 5 years)
21. maintenance-costs	(2 %)
22. interest-costs	(12 %)

****** RESULTS ***** ***** RESULTS *****	MERCERISING COSTS FOR A ANNUAL PRODUCTION AND C KNITGOODS MERCERISING P	GIVEN IVEN ACHINE	
Annual quantity of mer	cerised fabric = 720000	Kg	
Running time avaiable	=1920Hours	s/year	
Utilisation of merceri	ser =98%		
Annual costs of knitgo	ods mercerising (in £):		
Caustic soda Wetting agent Water+Effluent Steam Electricity Labour Depreciation Maintenance Interest Extra's/Overheads	29462.40 5760.00 5760.00 12960.00 1440.00 22500.00 30000.00 2800.00 18000.00 1500.00	22.6% 4.4% 4.4% 10.0% 1.1% 17.3% 23.0% 2.2% 13.8% 1.2%	
Total annual mercerisi	ng costs:	£	139, 182.49
Mercerising costs per Mercerising costs per	Kg of fabric: linear metre of fabric:	£	0.181 0.036

******** RESULTS COMPLETE ********

**************************************	SON OF THE TO EFORE & AFTER GIVEN MERCE	TAL PROC INSTALL RISER	ESSING Ing A	
MERCERISED PRODUCTION BASED ON	GIVEN PRODUCT	MIX	(3)	
XProduct Mix Pastels 10.0% Mediums 20.0% Deeps 10.0% Hhites 60.0%	*Merc'd 33.0% 33.0% 33.0% 2.0%	ōf (1)	%Time on me 22.9% 45.8% 22.9% 8.3%	rc'r
Total %/Wt fabric 100%/5000Tonn	es 14%/720	000Kg Me	rc'd	
ANNUAL PROCESSING COSTS FOR TOT	AL NILL PRODU No Merce	CTION(in riser	£) With Mercer	iser
Cost of dye: Processing costs for dyeing: Cost of mercerising:	728,900.0 800,000.0	20.7% 23.1%	602,437.0 800,000.0 130182.0	17.3%
Cost of additional processing:	1,958,000.0	56.2%	1,950,000.0	56.0%
Total annual cost :	3,470,000.0	100.0%	3,482,619.0	100.0%
Average cost per Kg of fabric:	£0.69	4	£0.69	7
Break-even cost of merc'd fabri	c/Kg:		£0.71	2
Net annual merc cost when dye s	avings consid	ered:	£12619	
Net mercerising cost/Kg of fabr	ic:		£0.01	8

No Depre	eciation Costs		
**************************************	ERCERISING COSTS FOR A NNUAL PRODUCTION AND G NITGOODS MERCERISING M	GIVEN IVEN ACHINE	
Annual quantity of merce	rised fabric = 720000	Kg	
Running time avaiable	=1920Hours/year		
Utilisation of mercerise	er =98%		
Annual costs of knitgood	Is mercerising (in £):		
Caustic soda Wetting agent Water+Effluent Steam Electricity Labour Depreciation Maintenance Interest Extra's/Overheads	29462.40 5760.00 5760.00 12960.00 1440.00 22500.00 0.00 2800.00 0.00 1500.00	35.9% 7.0% 15.8% 1.8% 27.4% 0.0% 3.4% 0.0% 1.8%	Ļ
Total annual mercerising	costs:	£	82, 182.40
Mercerising costs per Ke Mercerising costs per li	of fabric: inear metre of fabric:	£	0.114 0.023
******** RESULTS COMPLE	TE *****		

**************************************	X COMPARIS COSTS BEI	DN OF THE TOT FORE & AFTER GIVEN MERCE	TAL PROC INSTALL RISER	ESSING ING A	
MERCERISED PRODUCTIO	N BASED ON G	IVEN PRODUCT	MIX	(3)	
XP Pastels 10 Mediums 20 Deeps 10 Whites 60	Product Nix 3.0% 3.0% 3.0% 3.0%	*Merc'd 33.0% 33.0% 33.0% 2.0%	ōf (1)	%Time on me 22.9% 45.8% 22.9% 8.3%	rc'r
Total %/Wt fabric 10	0%/5000Tonne	s 14%/720	000Kg Me	rc'd	
ANNUAL PROCESSING CO	ISTS FOR TOTA	L MILL PRODUC No Merce	CTION(in riser	£) With Mercer	iser
Cost of dye: Processing costs for Cost of mercerising: Cost of additional p	dyeing: processing:	720,000.0 800,000.0 1,950,000.0	20.7% 23.1% 56.2%	602,437.0 800,000.0 82182.0 1,950,000.0	17.5% 23.3% 2.4% 56.8%
Total annual cost :	_	3,470,000.0	100.0%	3,434,619.0	100.0%
Average cost per Kg	of fabric:	£0.69	4	£0.68	7
Break-even cost of #	serc'd fabric	∕Kg:		£0.64	5
Net annual merc cost	t when dye sa	vings conside	ered:	£-35381	
Net mercerising cost	t∕Kg of fabri	c:		£-0.0	49

Figure 26

Caustic Recovery

****	********* MERCERISING DETAILS	******	
1.2.34.56	price of caustic soda price of wetting agent price of water price of steam price of electricity price of labour	(£ 0.062/Kg) (£ 0.8/Kg) (£ 0.4/cubic metre) (£ 0.0075/Kg) (£ 0.032/KWh) (£ 6/man-hour)	
7.	consumption of caustic soda	<pre>(0.13 Kg/Kg of fabric)</pre>	4
8.	consumption of wetting agent	(0.01 Kg/l merc liquor)	
9.	consumption of water	(9.6 cubic metres/hour)	
10.	consumption of steam	(1270 Kg/hour)	
11.	consumption of electricity	(36 KW)	
12.	"consumption" of labour	(2 men)	
13.	weight of the fabric	(0.2 Kg/running metre)	
14.	running speed	(40 running metres/min.)	
15.	running time	(1920 hours/year)	
16.	efficiency	(80 %)	
17.	price of mercerising-machinery	(£ 211429)	Ę
18.	costs of installing, etc.	(£ 15000)	
19.	extra costs or overheads	(£ 1500)	
20.	depreciation-costs	(depr. period: 5 years)	
21.	maintenance-costs	(2 %)	
22.	interest-costs	(12 %)	

Figure 28

**************************************	MERCERISING COSTS FOR A ANNUAL PRODUCTION AND G KNITGOODS MERCERISING M	GIVEN IVEN ACHINE	
Annual quantity of mer	cerised fabric = 720000	Kg	
Running time avaiable	=1920Hours	/year	
Utilisation of merceri	ser =98%		
Annual costs of knitgo	ods mercerising (in £):		
Caustic soda Wetting agent Water+Effluent Steam Electricity Labour Depreciation Maintenance Interest Extra's/Overheads	5803.20 5760.00 5760.00 14287.50 1728.00 22500.00 45285.80 4228.58 27171.48 1500.00	4.3% 4.3% 10.7% 1.3% 16.8% 33.8% 20.3% 1.1%	
Total annual mercerisi	ng costs:	£	134,924.56
Mercerising costs per Mercerising costs per	Kg of fabric: linear metre of fabric:	£	0.186 0.037

******** RESULTS COMPLETE ********

COMPARISON OF THE TOTAL PROCESSING COSTS BEFORE & AFTER INSTALLING A GIVEN MERCERISER ****** ***** RESULTS ***** ********************* MERCERISED PRODUCTION BASED ON GIVEN PRODUCT MIX (1) (2) (3)"Merc'd of (1) %Product Mix %Time on merc'r 33.0% 33.0% Pastels 10.0% 22.9% 45.8% Mediums 20.0% Deeps 10.9% 33.0% 22.9% 8.3% Whites 60.0% 2.6% Total %/Wt fabric 100%/5000Tonnes 14%/720000Kg Merc'd ANNUAL PROCESSING COSTS FOR TOTAL MILL PRODUCTION(in£) With Merceriser No Merceriser 602,437.0 800,000.0 134025.0 17.3% 22.9% 3.8% Cost of dye: 720,000.0 20.7% Processing costs for dyeing: 800,000.0 23.1% Cost of mercerising: Cost of additional processing: 1,950,000.0 56.2% 1,950,000.0 55.9% Total annual cost : 3,470,000.0 100.0% 3,486,462.0 100.0% Average cost per Kg of fabric: £0.694 £0.697 Break-even cost of merc'd fabric/Kg: £0.717 Net annual merc cost when due savings considered: £16462 £0.023 Net mercerising cost/Kg of fabric:

Figure 30

No Depreciation Costs + Caustic Recovery

MERCERISING COSTS FOR A GIVEN ANNUAL PRODUCTION AND GIVEN KNITGOODS MERCERISING MACHINE ****** ***** RESULTS ***** ******* Annual quantity of mercerised fabric = 720000 Kg Running time avaiable =1920Hours/year Utilisation of merceriser =98% Annual costs of knitgoods mercerising (in £): Caustic soda 5803.20 9.4% Wetting agent Water+Effluent 5760.00 9.4% 5760.00 14287.50 9.4% Steam 1728.00 2.8% 36.5% Electricity 22500.00 Labour 0.00 4228.58 0.0% Depreciation 6.9% Maintenance Interest 0.00 8.0% 1500.00 Extra's/Overheads 2.4% Total annual mercerising costs: £ 61,567.28 Mercerising costs per Kg of fabric: 0.086 £ Mercerising costs per linear metre of fabric: £ 0.017

*********** RESULTS COMPLETE **********

Figure 32

COMPARISON OF THE TOTAL PROCESSING COSTS BEFORE & AFTER INSTALLING A GIVEN MERCERISER MERCERISED PRODUCTION BASED ON GIVEN PRODUCT MIX (1) (2) (3) %Product Mix "Merc'd of (1) XTime on merc'r 10.0% 33.0% 22.9% 45.8% Pastels Mediums 19.0% 22.9% Deeps 33.0% Whites 60.0% 2.0% 8.3% Total %/Wt fabric 100%/5000Tonnes 14%/720000Kg Merc'd ANNUAL PROCESSING COSTS FOR TOTAL MILL PRODUCTION(in£) No Merceriser With Merceriser 602,437.0 800,900.0 61567.0 Cost of dye: 720,000.0 20.7% 17.6% 23.4% Processing costs for dyeing: Cost of mercerising: 800,000.0 23.1% 1,950,000.0 57.1% 1,950,000.0 56.2% Cost of additional processing: Total annual cost : 3,470,000.0 100.0% 3,414,004.0 100.0% Average cost per Kg of fabric: £0.694 £0.683 Break-even cost of merc'd fabric/Kg: £0.616 Net annual merc cost when dye savings considered: £-55996 £-0.078 Het mercerising cost/Kg of fabric:

