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1. Introduction

We would like to be in a position to predict the final dimensional specifications of any knitted
cotton fabric based only upon a knowledge of the knitting parameters - yarn count / stitch
length - and the finishing route used.

There is no shortage of literature containing equations which purport to achieve this aim but,
in fact, all of these equations have been developed on grey fabrics whereas we know that
commercial finishing processes do change the relaxed dimensions.

The need to be able to predict final performance is an obvious one if we are ever to approach
the problem of controlling dimensional stability in cotton knits. Likewise, it is obvious that
all deliberations must start from a consideration of the so-called fully relaxed structure.

In all that follows, “fully-relaxed” is defined according to the IIC standard relaxation of one
wash and tumble drying, followed by four more cycles of wetting out and tumble drying.

Note for digital version: This terminology was later changed to “Starfish
Reference State” and “Starfish Reference Relaxation Procedure”.

Research Record No. 120 described a computer programme which allowed the large amount
of data generated by our CP78 project on interlock and 1x1 rib to be filed on floppy discs and
recalled at will, in various combinations, for interfacing with certain statistical software
packages and for tabulation or plotting.

This report describes how a fairly unsophisticated mathematical analysis was carried out
using the facilities of that programme, in order to arrive at a set of empirical linear regression
equations whose predictive power was good enough to use in building a mathematical model
for the interlock and 1x1 rib fabrics of CP78.

The actual model that has been built with these equations will be the subject of a separate
report.

2. A Mathematical Analysis

General Approach

According to a good many authors, for plain jersey fabrics:

courses/cm = Kc / L (1)

wales/cm = Kw / L (2)

where Kc and Kw are “constants” which depend upon the degree of relaxation of the fabric
but not upon the yarn count used to manufacture it. Thus, from a knowledge of the yarn count
and stitch length, all the dimensional properties of a given fabric can be calculated, for the
given state of relaxation. The yarn count value is required only to calculate the weight.

The dimensional properties of interlock and 1x1 rib fabrics have been considered by Hurt (1)
and by Nutting and Leaf (2) who suggest that, for structures other than plain jersey, the yarn
count must be introduced into the calculation for courses and wales. They propose
(implicitly) relationships of the type:

courses/cm = a + b / L + c . Tex (3)

wales/cm = a’ + b’ / L + c’ . Tex (4)
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However, these authors, in common with most others in the past, have studied only or
predominantly grey-state fabrics and / or have dealt with only partially relaxed materials.

Our objective in this investigation is to find rational equations for calculating the dimensional
properties of 20 gauge interlock and 14 gauge 1x1 rib fabrics which depend upon materials in
the fully-relaxed state and which have been subjected to one of several commercial finishing
routines.

Starting from the assumption that equations such as (3) and (4) will be adequate for predicting
the dimensional properties of grey-relaxed fabrics, there are three possibilities to account for
the effect of finishing routines.

1. The equations remain the same (i.e. there is no change in the value of the coefficients), but
the finishing process brings about changes in the stitch length, L, and the yarn Tex due, for
example, to yarn shrinkage.

2. The equations retain the same form but, in addition to any changes brought about in Tex
and L, the coefficients are significantly shifted to different extents by the different
finishing routines.

3. A different form of equation is required for one or more of the different finishing routines.

Whilst situation No. 3 should perhaps not be dismissed out of hand, it is considered extremely
unlikely in view of the fact that the literature records examples of equations being
successfully applied to fabrics knitted from different fibres and yarn types, with only a change
in the coefficients to account for these enormous differences.

A very neat result would be if situation No. 1 should prove correct, since the only
experimental work then required (once the basic equations had been established) would be to
discover the effect of a given finishing routine upon Tex and L.

Such good fortune can scarcely be contemplated and, in any event, can not be assumed from
the outset. Therefore, our analysis has proceeded on the assumption that No. 2 will prove to
be the more accurate model of reality.

Therefore, the general approach was as follows:

1. For each finishing routine, establish the relationship between yarn Tex as knitted to that in
the final finished, fully-relaxed fabric. This enables the yarn Tex in the finished fabric to
be calculated.

2. For each finishing routine, establish the relationship between stitch length as knitted to
that in the final, finished, fully-relaxed fabric. This enables the stitch length in the
finished fabric to be calculated.

3. Establish, for a few key finishing routines, the apparently best form of equation linking
the (measured) relaxed, finished Tex and stitch length to courses, wales, and weight.

4. Assume that the same general form of equation is valid for all other finishing routines.

5. Determine the coefficients of these equations for all finishing routines.

In the next few sections, the results of these analytical steps are summarised, taken in order of
the properties examined.
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Yarn Count

The yarn count, as knitted, had been measured in our laboratory, by sampling the original
cones, and also by Courtaulds Central Technology unit at Heron Mill, by sampling the
residual packages after knitting. Weighted averages were calculated for each yarn count from
these two series of measurements.

The yarn count in the finished, relaxed state had been measured in our laboratory by
withdrawing courses from the relaxed fabrics. For several of the finishing routes, statistical
tests were carried out to see whether the fabric tightness had been influential in modifying the
change in yarn tex brought about by a given finish. It seemed that there was no effect of
tightness, so all of the (5 or 6) values for a given yarn count and finish were averaged to arrive
at the estimate for the finished, relaxed count.

Originally, the Ne count values had been used, but these were converted to Tex before the
regression analysis was carried out.

Regression analysis was carried out using the least squares method and the best model was
found to be:

y = a + b.x

where y is the finished relaxed Tex, x is the Tex as knitted, a, b are constants.

For interlock, the correlation coefficient, r, was always better than 0.98 and averaged about
0.998.

For rib, r was always better than 0.99 and averaged about 0.995.

The constants for the equations are given together with the corresponding values for r2 in
Figures 1 and 2. Graphs showing the fit of some of the regressions are shown in Figures 3
and 4. Plots of measured vs. calculated results are shown in Figure 5.

The regression equations for interlock and 1x1 rib fabrics are rather similar so it was
interesting to calculate the average regression for a few of the finishes to see whether the
fabric structure plays a decisive role. The results are shown in Figure 6 where it can be seen
that the average regression is a good approximation for both sets of data. The implication is
that fabric construction, within the range studied, has only a minor influence, if any, upon the
magnitude of the change in yarn Tex brought about by finishing. Figures 3, 4 and 6 confirm
that the different finishing processes do cause a significant change in yarn Tex. The largest
change is caused by mercerising which resulted in a net increase in Tex of about 8%.

Stitch Length

Stitch length had been measured in the grey fabric and in the finished, relaxed material.
Earlier extensive trials (3) have established that the stitch length measured on grey fabric is an
accurate estimate of the stitch length as knitted and measured by electronic or mechanical run-
in meters.

Preliminary analysis established that the best model for predicting stitch length in the
finished, relaxed fabrics would be y = a + b.x, so the least squares regression analysis was
performed for all finishes on this model.

Correlation coefficients were always better than about 0.96 and averaged about 0.991 so the
equations can be considered to be reliable within the range studied. Values for the various
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regression constants and for r2 are given in Figures 7 and 8 and plots of some of these are
shown in Figures 9 and 10. In Figure 11 both interlock and rib data are plotted together to
show that the dominant influence is the finishing process rather than the fabric construction.

Wales

The first model to be checked was that represented by equation (2) which holds that the
wales/cm can be predicted solely from the reciprocal of stitch length using the model

y = a + b / x

where y is the finished, relaxed wales/cm and x is the finished, relaxed stitch length.

Correlation coefficients were always better, for the various finishing routines, than 0.89, and
averaged about 0.94. These are pretty good values but inspection of some of the graphs gives
a strong impression of a yarn count effect and, in view especially of the work of Hurt (1), it
was decided to check the effect of including the yarn tex as a factor in the equation.

Two approaches were taken, for a few of the more important finishing routines:

1. A combined tex-stitch length function, such as the tightness factor ( Tex / L ) instead
of 1 / L.

2. A separate additional term involving only the tex.

Under approach No. 1 the following models were evaluated.

y = a + b. Tex / L

y = a + b. Tex / L

y = a + b / (Tex. L)

y = a + b / (L. Tex)

Of these, only the last resulted in a better fit to the data, with average r values at about 0.95.

Under approach No. 2, the following models were evaluated.

y = a + b. L + c. Tex

y = a + b / L + c. Tex

y = a + b / L + c. Tex

All three of these models resulted in an improved fit with average correlation coefficients of
about 0.96. The third one was slightly better than the others and, in addition, is of the same
form as that deduced by Hurt (1) from geometrical considerations so this model was chosen
and applied to the whole series of finishing routes.

The final results of applying this model to the calculations of wales are shown in Figures 12
and 13 where the coefficients and r2 values for the regressions are tabulated.

Figures 14, 15, 16, and 17 are graphical illustrations of the calculated regressions.

Courses

The analysis carried out on the courses was exactly analogous to that for wales described in
the previous section and had a similar outcome. In other words, it was found that the model
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courses/cm = a + b / st.len.

gave a good fit to the data (average r about 0.97) which could not be improved upon by
making the second term into a combined function of Tex and stitch length. However, the
inclusion of Tex as an independent third term in the model, i.e.

courses/cm = a + b / st. len. + c. Tex (5)

resulted in a clear improvement with an average r value in the region of 0.991.

The equations are tabulated in Figures 18 and 19, and some graphical illustrations are given
in Figures 20, 21, 22 and 23.

Weight

In principle there are three ways to approach the calculation of weight:-

1. Weight = courses x wales x Tex x St. Len. (6)

where courses and wales are calculated from the regression equations found in the
previous sections.

2. Weight = S x Tex x St. Len. (7)

where S, the product of courses and wales, is calculated via a new regression equation
involving the finished, relaxed Tex and stitch length. The justification for making a
separate regression analysis for S is that the variability in S tends to be less than that in the
measured values of courses and wales due to mutual compensation of the latter two when
fabrics are distorted.

3. Weight = f(Tex, St. Len.)

i.e. a new regression analysis in which the finished, relaxed weight is related directly to
the finished, relaxed tex and stitch length only.

Approach No. 1 needs no further work, since we already have the necessary equations for
calculating the finished, relaxed Tex, stitch length, courses, and wales.

The two other approaches were both investigated.

Stitch Density, S

The first model to be tested was derived simply from equations (1) and (2)

S = a + b / L2 (8)

in which the influence of yarn count is neglected.

For the most important finishing routines, this model gave a very good fit with r always better
than about 0.97.

However, since the inclusion of Tex had improved both the course and the wale predictions, it
seemed logical to check out this possibility for S also.

Since we have chosen 1 / L and Tex as the parameters for predicting courses and wales, it is
clear that the following are all candidates for predicting S, the product of courses and wales.
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1 / L Tex 1 / L2 Tex / L Tex

Three models were tested fairly extensively.

S = a + b / L2 + C. Tex

S = a + b / L2 + C. Tex / L

S = a + b / L2 + C. Tex + d. Tex / L

The greatest improvement was brought about by the first of these and although there were
slight additional improvements from the more complicated models, the difference was not
significant.

Therefore, regression analysis was performed over all fabrics and finishes using

S = a + b / L2 + C. Tex (9)

with the result that correlation coefficients were found to be always better than 0.98 and to
average about 0.995.

Figures 24 and 25 give the values of regression coefficients and r2 values found. As could
have been suspected, the regression equations for S turn out to be more reliable than the
separate regressions against courses or wales.

Figures 26, 27, 28, and 29 show plots of some of these regressions against the observed
results.

Direct Regression Against Weight

This section began also with the simple derivation from equations (1) and (2) which for
weight is as follows.

Weight = a + b. Tex / L (10)

Using this model, a good fit was obtained for the data with correlation coefficients never less
than 0.95 and averaging about 0.98.

Nevertheless, since we had found the courses and wales and S relationships had all been
improved by adding further terms, it was decided to consider whether corresponding
improvements could be made here also.

Consideration of equations (5), (6), (7), and (9) leads to the conclusion that the following
parameters should all be candidates for an equation linking weight with Tex and stitch length.

Tex Tex.Tex Tex / L Tex.Tex.L Tex2.L Tex.L

A wide range of possible models was examined for a selected number of finishing routes,
starting with single-term functions, and then adding in a second, and third term.

It was found that there was only a slight improvement in the correlation coefficients with each
additional term and that no particular parameter was preferred over all others. It was
concluded, therefore, that there was no sound justification for going beyond the simple model
of equation (10).

Figures 30 and 31 give the coefficients and r2 values for this model, and Figures 32, 33, 34,
and 35 show plots of some of the regression equations against the measured data.
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3. Discussion

The title of this report starts with the indefinite article and this was deliberate. The analysis
undertaken was only one possible way of approaching the topic and had a strictly limited
objective, namely the discovery of a set of equations which would predict the fully relaxed
dimensions of the 20 gauge interlock and 14 gauge 1x1 rib fabrics which were produced in
project CP78.

Thus, although we have paid attention to fundamental geometrical considerations, by using
the basic form of equations developed by others from first principles, no real physical
meaning can be attached to the coefficients and constants which have emerged, and
extrapolations of the results outside this range of fabrics should not be undertaken without the
confirmation of hard new experimental data.

No attempt has so far been made to test the significance of the differences between the
equations representing different fabrics and finishing routes. In some cases such testing is
hardly necessary since a casual inspection of the data will confirm real differences - for
example between mercerised and not mercerised fabrics - but it may well be that a more
sophisticated analysis would allow some reduction in the number of required equations.

Two obvious examples of this possibility are illustrated in Figure 6, where it seems likely that
a single set of equations might serve for both interlock and rib fabrics, and in Figure 10 where
it seems likely that the same equation might serve for both crosslinked and not-crosslinked
fabrics.

The fact that some finishing routes require significantly different equations from others is a
finding of theoretical importance. It means that the yarn count and stitch length alone are not
sufficient to explain changes in dimensional properties, even after corrections have been made
to allow for the changes in count and loop length caused by the finishing process.

Therefore at least one other factor must be introduced into the reckoning. The obvious
candidates are:

Yarn surface friction

Yarn stiffness

Yarn specific volume

Fibre swelling power

Yarn elastic modulus

“Setting” of the loop shape

any or all of which could influence the mechanism of relaxation and / or the shape of the
relaxed loop.

However, although the qualitative importance of additional factors is clear, it is not necessary
to elucidate these numerically in order to make practical use of the equations developed.

4. Conclusions

1. A set of empirical equations has been developed which can be used to predict the
dimensional properties of a range of interlock and rib fabrics, in the fully relaxed state,
with a good degree of precision.
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2. Although the coefficients and constants of the equations have been empirically
determined, the forms of the equations are based upon apparently sound geometrical
considerations proposed by previous workers.

3. It is clear that improvements to the analysis could be made and that at least one other
parameter besides yarn count and stitch length is needed to fully explain the dimensional
changes brought about by different finishing routes, but the present analysis is considered
adequate for the time being.
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