

International Institute For Cotton Technical Research Division Manchester

Research Record No. 110

The Prediction Of Relaxed Weight Per Unit Area Of Wet Processed Interlock And 1x1 Rib Fabrics

Peter F. Greenwood January 1980

Classification:Fabrics/Knitted/PropertiesKey Words:Interlock, 1x1 Rib, Relaxed Structure, Weight per unit area.

Digital version: November 2011

Contents

		page
1.	Introduction	2
2.	Fabric production, processing and coding	3
3.	Knitting parameters - yarn count and stitch length	3
4.	Fabric weight per unit area	4
5.	Fabric weight and knitting parameters	4
6.	Use of results in a predictive model	5
7.	Comparisons with earlier studies	5
8.	Conclusion	5
9.	Bibliography	6
Table	es I to VIII	7
Figu	res 1 to 3	11

1. Introduction

It should be self-evident that the weight per unit area of a knitted fabric is equal to the mean weight of a single knitted loop multiplied by the number of loops in the same area.

The weight of a single loop is proportional to the yarn count in tex, and also to the length of yarn which makes up the loop, the stitch length.

These relationships may be combined into a single equation

$$W = N . l . S . K \tag{1}$$

where

W is the fabric weight per unit area,

N is the yarn count in tex,

S the stitch density, or number of stitches per unit area

K is a constant.

Many studies of the structural parameters of relaxed knitted fabrics have been reported in recent years, and most workers have concluded that a relationship exists between the stitch density, S, and the stitch length, l, of a relaxed plain-knit structure, which is approximately of the form

$$S = K_s / l^2 \tag{2}$$

In the study of knitted structures generally, it has become customary to consider not the length of a single stitch, but the length of yarn in a repeating unit of the knitted structure. For plain single jersey, this is equal to one stitch length, but for 1x1 rib it is taken as the length of two stitches, and for interlock, four stitch lengths.

Thus, the general equation is

$$S = K_1 / n l^2 \tag{3}$$

where n = 1, 2 and 4 for single jersey, 1x1 rib and interlock respectively.

If equation (3) is substituted into equation (1), it can be seen that

$$W = K \cdot N/n \cdot l \tag{4}$$

W in this case is, of course, the fabric weight at some defined state of relaxation.

If *W* is expressed as grams per square metre, the stitch length in mm and the yarn count in tex, then, for plain single jersey, the constant in equation (4) is numerically equal to K_s in equation (2), i.e.

 $W = K_s . N/l \tag{5}$

and, taking the generalised situation

$$W = K_1 . N/n.l \tag{6}$$

A considerable amount of evidence has been published in favour of the existence of a relationship of this type, linking yarn count, stitch length and relaxed weight of knitted fabric, and a selected bibliography can be found at the end of this report. Almost all previous work, however, has been carried out on fabrics which received no commercial finishing treatments, and the knitter needs to know how his fabric behaves, not only in the grey state, but also after

a predetermined finishing treatment which may include such techniques as piecemercerisation or crosslinking; processes which are known to have marked effects on fabric structure.

Research Records Nos. 83 and 94 describe the production of a series of cotton interlock and 1x1 rib fabrics in a range of stitch lengths and yarn counts, and finished by a variety of methods.

Various trials were undertaken to establish a reliable test method for obtaining full relaxation of these fabrics. The method eventually adopted is described in *Figure 1*.

As part of an extensive testing programme, the relaxed weight of each of these fabrics, at various stages of processing, has been measured.

This report is concerned with a study of these measurements, and proposes an empirical method for predicting the finished fabric weight from information on the fabric knitting parameters.

2. Fabric Production, Processing And Coding

The production of the 15 interlock and 16 rib fabrics is described in *Research Record No. 83*, and the processing treatments, with the exception of piece-mercerisation, are described in *Research Record No. 94*. The piece-mercerisation treatment will be described in a later *Research Record*. During the course of production and processing, each fabric variant was allocated a coded identifier, made up as follows.

- first a letter (I or R) indicating the fabric type Interlock or Rib,
- then a two-digit number equal to the nominal grey yarn count (Ne), followed by an oblique,
- then a three-digit number indicating the nominal knitted stitch length,
- finally, a finishing code of up to four letters indicating the finishing treatment. A list of finishing codes is given in *Table I*.

For mainly economic reasons, the finishing treatments were grouped into two categories, which may be termed the major series and the minor series. The major series, comprising the mercerisation and jet dyeing trials, included all the fabric construction variants; the minor series, including winch dyeing and various bleaching treatments, were applied only to six selected constructions of each type.

Perhaps unfortunately, the selected fabrics did not include the extremes in each range.

3. Knitting Parameters - Yarn Count And Stitch Length

Measurements of yarn count were carried out on the yarn packages before knitting. These results were reported in *Research Record No. 83*. For the purposes of this report they were converted to tex, and the converted figures appear in *Table II*.

Measurements of stitch length were carried out on samples of the knitted fabrics both before and after a standard relaxation treatment. For the purpose of making predictions based on knitted fabric construction, it was considered that the stitch length before relaxation would serve as an adequate starting point. The unrelaxed stitch length results are also given in *Table II*.

Following the line of earlier work, the ratio of yarn count to stitch length has been calculated for each fabric construction. These figures are also given in *Table II*, and are used as the basis for the calculations which are described later.

4. Fabric Weight Per Unit Area

The results of measurements of relaxed fabric weight, in grams per square metre, are given in *Tables III to VI*.

Table III shows the results on the major series of interlock fabrics, that is the variants which included piece mercerisation or jet dyeing treatments. *Table IV* gives the results on the minor series of interlock fabrics, while *Tables V and VI* show results on the rib fabrics for major and minor series respectively.

5. Fabric Weight And Knitting Parameters

The purpose of this study was to find a method whereby the relaxed weights of a knitted fabric might be predicted from a knowledge of the knitting parameters of yarn count and stitch length, and the processes of dyeing and finishing which had been, or were going to be, applied to that fabric.

From equation (6), it appeared sensible to take the ratio of yarn count to stitch length (N/l), as defined in paragraph 3, as the starting point for prediction, and the first step was an examination of the correlation of the fabric weights according to the general equation

W = A. N/l

(7)

A being a constant, for each fabric type and finishing route.

The results are given in *Table VII*.

It can be seen that, with a few exceptions, correlation of fabric weight to count/stitch length is quite good. One might consider that where the correlation coefficient, r^2 , is above, say, 0.9, then substitution into equation (7) would give a reliable enough predictive model for most practical purposes.

Nevertheless, as it was intended that this should be an empirical study, it was decided that some modification to equation (7) might be found which would improve correlation. *Table VIII* gives results of a similar series of calculations based on the equation

$$W = A. N/l + B$$

(8)

where *A* and *B* are both constants.

In most cases correlation was only slightly improved using this equation, notable exceptions being the jet dyed and compacted, and the winch bleached and compacted, interlock results.

Other relationships have been examined, but no significant improvements in correlation were observed. A typical set of results is given in *Figure 2* (note that the *A* and *B* figures should be transposed in all but the first line of results).

Figure 3 shows the relationship between fabric weight and N/l for the grey fabrics. Both sets of data can be seen to lie closely along straight lines and there are no signs that yarn count has any independent influence. (This last point has been confirmed by multiple linear regression analysis).

6. Use Of Results In A Predictive Model

By substitution into the appropriate equation, the figures given in *Table VII and VIII* can be used in various ways, for example.

- 1. Knowing the yarn count and stitch length used in knitting a fabric, the relaxed weight can be predicted for a number of finishing routes.
- 2. For a given yarn count, finishing route and finished relaxed weight, the required stitch length can be calculated.
- 3. Differences between finished weight and calculated relaxed weight can be used to predict shrinkage performance.
- 4. Differences in relaxed weight produced by changes in finishing route can be predicted.

It must be pointed out, however, that these equations have been derived from a database which is limited in terms of yarn counts, fabric constructions and finishing treatments, and some care should be exercised if they are being applied to situations outside these limits, for instance, to fine-gauge interlock, or plied yarns. The influence of finishing has been studied in only one dyeworks, and it may be that different results would be obtained in another situation.

7. Comparison With Earlier Studies

Mention was made in the introduction to the report of the earlier work which had been carried out, almost exclusively with grey fabrics, on relaxation of the knitted structure. This has resulted in the postulation of a series of 'constants' said to govern the behaviour of knitted structures in relaxation, and these have been termed "k-values". One of these, K_I , appears in equation (6), and by comparing equations (6) and (7), we see that

$$K_1 = A.n \tag{9}$$

Using the values for A shown in *Table VII*, K_1 can therefore be calculated to be, for the grey fabrics

interlock $K_1 = 205.3$ 1x1 rib $K_1 = 64.3$

In other publications (see Bibliography) Hunter, Cawood and Dobson report a value of 192 for interlock, and Poole and Brown find a mean value of 56.8 for 1x1 rib.

8. Conclusion

A series of equations has been described linking fabric weight per unit area with constructional parameters and finishing routes. It is proposed that these equations could form part of a predictive model for the production and processing of cotton interlock and 1x1 rib fabrics.

9. Bibliography

P.J. Doyle, "Fundamental Aspects of the Design of Knitted Fabrics", J. Text. Inst. 1953, 44, P561.

F.N. Hurt, "*The Fabric Geometry of Wet-Relaxed Cotton Interlock*", HATRA Research Report No. 12, (January 1964).

H.B. Poole and P. Brown, "*The Dimensions of 1x1 Rib Fabrics. Part I Literature Survey*", Text. Research J., 1978, 48, 339.

H.B. Poole and P. Brown, "*The Dimensions of 1x1 Rib Fabrics. Part II Blend and Treatment Interactions*", Text. Research J., 1978, 48, 371.

L. Hunter, M.P. Cawood and D.A. Dobson, "The Dimensional Properties of Interlock and Plain Single Jersey Fabrics containing Cotton and Polyester", SAWTRI Technical Report No. 443, (February 1979).

TABLE I

FINISHING CODES

G.....Grey or Greige M.....Nercerised WB.....Winch Bleached WD.....Winch Dyed JD....Jet Dyed CBT.....Continuous Bleach, Tubetex compacted WDH.....Winch Dyed, Hunt & moscrop(Bestan) comp. HBT.....Winch Bleached, Tubetex compacted JDH.....Jet Dyed, Bestan compacted MHB.....Mercerised, Winch Bleached NJD.....Mercerised, Jet Dyed MHBT.....Merc., Winch Bleached, Tubetex compacted MJDH.....Merc., jet Dyed, Bestan compacted

TABLE II. Knitted Fabric Data.

INTERLOCK FABRICS

1x1 RIB FABRICS

SAMPLE IDENTIFIER	Tex	SL-mm.	Tex/SL	SAMPLE IDENTIFIER	Tex	SL-mm.	Tex/SL
134/307 134/324 134/340 134/359 134/377	16.84 16.84 16.84 16.84 16.84	3.050 3.261 3.425 3.608 3.767	5.52 5.16 4.92 4.67 4.47	R26/267 R26/285 R26/306 R26/326 R26/326 R26/350	21.90 21.90 21.90 21.90 21.90 21.90	2.702 2.855 3.115 3.339 3.550	8.11 7.67 7.03 6.56 6.17
138/307 138/324 138/340 138/359 138/377	15.37 15.37 15.37 15.37 15.37	3.100 3.248 3.519 3.613 3.705	4.96 4.73 4.37 4.25 4.15	R30/267 R30/285 R30/306 R30/326 R30/326 R30/350	19.82 19.82 19.82 19.82 19.82 19.82	2.717 2.892 3.100 3.306 3.574	7.29 6.85 6.39 6.80 5.55
I42/307 I42/324 I42/340 I42/359 I42/377	13.92 13.92 13.92 13.92 13.92 13.92	3.046 3.229 3.457 3.576 3.819	4.57 4.31 4.03 3.89 3.64	R34/248 R34/267 R34/285 R34/306 R34/326 R34/326	16.84 16.84 16.84 16.84 16.84 16.84	2.505 2.692 2.883 3.103 3.348 3.570	6.72 6.26 5.84 5.43 5.03 4.72

THIEREOCK	PHORICO RE	I UNEU P	abitt. M	E130(2)	URDOL.	JEPTES
SAMPLE IDENTIFIER	Reio G	axed Fa	bric He JDH	ight g M	ms./sq. MJD	MJDH
134/307	277	265.8	256.2	318.4	307	301.2
134/324	265.8	252	243	303	287.2	283.4
134/340	253.2	241.2	234.4	291.4	282.6	284
134/359	241.2	224.8	226.8	279.6	275	274.5
I34/377	236.8	222.4	215.8	266.1	258	253.4
I38/307	249.6	244.6	233.2	282.6	275.2	272.8
I38/324	238	228	227.4	276.1	278.2	270.8
I38/340	227.6	223	216.4	266.6	254	255.6
I38/359	215.6	218.8	210	253.2	247.8	244
138/377	205.4	207.6	205.2	242.6	236.6	235.4
142/307	230.6	214.8	214.4	261.2	256	249.6
142/324	226.6	208	206.2	243	245.6	235.4
142/340	208.8	202.3	198.4	236.2	235	240.3
142/359	199	194.6	195.8	228	229	221.6
142/377	200.2	184.9	188.8	221.2	209	203.8

INTERLOCK FABRICS Relaxed Fabric Weights, Major Series.

IIC/MERIDIAN JOINT PROJECT 1978 Table IV

INTERLOCK	FABRICS Re	laxed F	abric H	eights,	Minor	Series.
SAMPLE	Re1	axed Fa	bric He	ight g	ns./sq.	CBT
IDENTIFIER	HD	NDH	HB	WBT	CB	
134/348	243	235.2	239.8	226.6	235.6	226
134/377	213.8		222.1	209.8	214.2	209
138/324	228.8	221.6	227.6	216.8	224	216
138/359	21 0. 6	203.8	210	205.6	203.5	194.6
142/307	210.2	208.6	217.6	210	205	196.6
142/340	193.6	193.8	196.2	195.2	195	185.2

1×1 RIB FABRIC	S Rela	xed Fab	ric Hei	ghts, M	ajor Se	ri es.
SAMPLE	Rel	axed Fa	bric We	ight g	ms./sq.	M.JDH
IDENTIFIER	G	JD	JDH	M	MJD	
R26/267	274	259.8	257.8	305.6	291.4	289.6
R26/285	250.8	241	242.4	291.6	281.6	285.3
R26/306	241.8	226.6	222	272	265.6	*
R26/326	218	211.4	203	248.3	248	247.2
R26/350	194.8	193.2	187.4	222	225	*
R30/267	229.3	220.8	222.2	262.8	258	256.8
R30/285	216	207.2	203.8	247.8	245	*
R30/306	198.8	190.6	185.6	231.8	222.2	224.4
R30/326	191.6	179.5	182.2	198.2	201	*
R30/350	173	164.4	162.6	198.1	197	191.2
R34/248	220.2	198	202.2	246	251	243.4
R34/267	194	191.4	187.6	224.6	221.2	*
R34/285	185.4	175.6	177.8	211.2	204.2	211.4
R34/306	172.8	163.2	161.5	204.2	193.8	*
R34/326	152	155	153.6	188.4	182.2	182.6
R34/350	143.4	145.8	140.9	177.8	170	173.1

IIC/MERIDIAN JOINT PROJECT 1978 Table VI

1×1 RIB FABRI	CS Rela	xed Fab	ric Wei	ghts, M	inor Se	ries.
SAMPLE	Rel	axed Fa	bric We	ight	gms./sq	MWBT
IDENTIFIER	ND	NDH	WB	WBT	MWB	
R26/306	218.2	226	214.6	211.6	244.6	243.4
R26/350	190.2	193.4	193	187	205	199
R30/285	199.4	208.8	200.4	195	218.6	215.2
R30/326	173.6	192.8	174.4	165.6	196	187.2
R34/267	175.6	186.2	176.8	173.2	211.2	200.8
R34/306	155	159.8	153.4	155.8	181.6	173.8

1v1 DID EADDICE Delayed Column Hainble Mater Court

FINISHING CODE	1	NTERLOCK	1×1 RIB		
Major Series	A	R-SQR	A	R-SQR	
ğ Jd Jdh MJd MJdh	51.31743 48.96528 48.24175 58.63409 57.10791 56.49078	0.94202 0.93089 0.88440 8.95599 0.95498 0.91716	32.14979 30.79225 30.50417 36.75454 35.94849 36.09107	0.95381 0.96161 0.97052 0.94732 0.96525 0.97615	
Minor Series HD HDH HB HBT CB CBT	48.20874 47.55797 48.68043 46.80385 47.34121 45.50116	0.88171 0.85785 0.94570 0.75253 0.85087 0.85180	29.51202 30.96167 29.52224 28.86388	0.87296 0.89381 0.87676 0.86829	
MWB MWBT		0100108	33.31871 32.36088	8.98285 8.87926	

TABLE VIII. Coefficients of W=Ax(N/2)+B.

FINISHING CODE		INTERLOCK	•, •	1	×1 RIB	
Major Series	A	в	R-SQR	A	в	R-SQR
G JD JDH MJD MJDH	45.82443 42.83237 36.80695 54.54813 50.16477 50.39820	25.05570 27.97457 52.15854 18.63765 31.67034 27.82711	0.95592 0.95060 0.98009 0.96145 0.97377 0.93096	37.63348 33.54746 34.05821 39.01256 37.85769 36.37523	-35.52590 -17.84957 -23.02471 -14.62853 -12.36863 -1.86496	0.97492 0.96827 0.98142 0.95056 0.96776 0.97621
Minor Series ND NDH NB CB CB CBT MNB MNBT	49.85435 42.68930 45.30819 32.05942 42.93913 43.47449	-7.42862 21.97825 15.22302 66.55958 19.87193 9.14885	0.88268 0.86921 0.95099 0.95550 0.85995 0.85367	36.11105 36.48630 35.32761 33.01729 34.97706 39.38031	-41.80514 -34.99880 -36.77732 -26.31210 -10.50572 -44.51912	0.90335 0.91494 0.90127 0.88235 0.90490 0.90838

'FULLY RELAXED STRUCTURE' - IIC LABORATORY METHOD

- 1. CONDITION
- 2. MARK fabric sample (50cm length and width)
- 3. WASH in automatic domestic washing muchine at 60°C
- 4. TUMBLE DRY until dry
- 5. WET OUT in washing machine (Rinse cycle)
- 6. TUMBLE DRY Antil dry
- 7. REPEAT steps 5 and 6 three more times
- 8. RE-CONDITION
- 9. MEASURE marked distances
- 10. CALCULATE shrinkages (length and width)

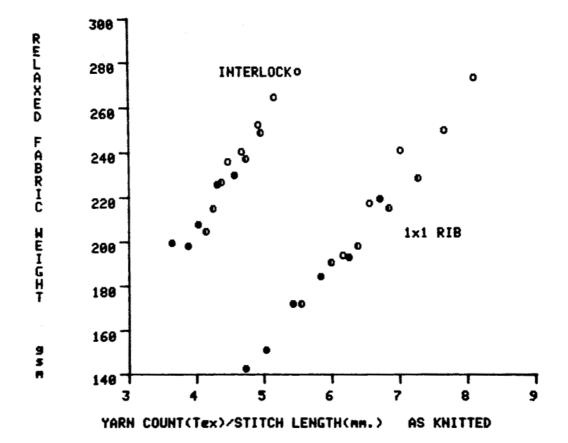


Figure	2
--------	---

TYPICAL LINEAR CORRELATION SLRVEY						
SELECT BEST FIT		···				
EQUATION						
Ĥ	В	RES ERROR	R-SQUARE	MAX DEVIATION		
Y = A\$X 29.51282		77.94716	8.87296	10.73048		
Y = A + B\$X ~41.88514	36.11105	59.30489	8.90335	9,19999		
Y = A*EXP(B*X) 53.75244	0.19584	57.10387	0.90693	10.24663		
Y = 1/(A + B#X) 0.01220	~8.08107	56.94931	8.98718	11.27419		
Y = A + B/X 406.38764	-1388.32327	68.63619	8.88814	10,28972		
Y = A + B¥LOG(X) -226.18470	224.21951	63.82382	8.89728	9.47429		
Y = A\$X†B 19.67114	1.21999	58.79753	0. 904 17	9.44564		
Y = X/(A + B\$X) 0,04133	-9.08116	58.42053	8.98 479	9,69705		
EQUATION Y = 1/	(A + BXX) HAS M	AXIMUM R-SQUA	RE			
EQUATION Y = A	+ 8*X HAS MININ	UN MAXIMUM AB	SOLUTE RESIDU	AL		

RIB WINCH DYED

Figure 3

RELAXED GREY FABRIC WEIGHT and KNITTING PARAMETERS.